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Abstract

Using firm-level data from the US Census Longitudinal Business Database (LBD),
this paper exhibits novel evidence about a wave of specialization experienced by US
firms in the 1980s and 1990s. Specifically: (i) Firms, especially innovating ones, de-
creased production scope, i.e., the number of industries in which they produce. (ii)
Innovation and production separated, with small firms specializing in innovation and
large firms in production. Higher patent trading efficiency and stronger patent pro-
tection are proposed to explain these phenomena. An endogenous growth model is
developed with potential mismatches between innovation and production. Calibrat-
ing the model suggests that increased trading efficiency and better patent protection
can explain 20% of the observed production scope decrease and 108% of the innova-
tion and production separation. They result in a 0.64 percent point increase in the
annual economic growth rate. Empirical analyses provide evidence of causality from
pro-patent reforms in the 1980s to the two specialization patterns.
JEL Code: E23, L22, O32, O34.
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1 Introduction

Profiting from innovation is vital for the survival of innovating firms and, therefore, eco-
nomic growth. However, it is not easy to monetize innovation using a firm’s own pro-
duction. First, ideas are random and are not always matched with a firm’s production.1

Second, the firm may lack the ability to mass-produce its innovation output.2 Strategies
to solve these problems within the firm include: spanning a large number of industries to
raise the opportunity of utilizing new inventions; doing innovation only when the firm
can produce and commercialize new inventions.

Surprisingly, this paper finds deviations from the aforementioned strategies among
US firms in the 1980s and 1990s using the Longitudinal Business Database (LBD) from the
Census Bureau—there is novel evidence of specialization trends.3 Specifically,

(i) US firms narrowed their production scopes, i.e., the number of industries in which
they produce. The scope shrinkage was driven by innovating firms.

(ii) Innovation shifted from large firms (firms with mass production) to small firms.
This study then asks: What are the driving forces of the observed specialization, and how
do they affect economic growth?

This paper proposes that higher patent trading efficiency and better patent protection
contribute to the specialization patterns by allowing innovations to be traded and utilized
by other firms. To assess this new hypothesis in explaining the specialization choices of
US firms and economic growth, an endogenous growth model is built with potential mis-
matches between innovation and production and firm heterogeneity in the ability to mon-
etize new inventions through production. Then, the model is calibrated to rich firm-level
data from the LBD, R&D data from the Survey of Industrial Research and Development
(SIRD), and patent data from the US Patent and Trademark Office (USPTO). The model
suggests that increased patent trading efficiency and patent protection can jointly explain
20% of the production scope contraction and 108% of the shift of innovation activities.
They lead to a 0.64 percent point increase in the annual economic growth rate.

Here is a complete summary of the hypothesis. Increased patent trading efficiency
and patent protection made innovations more commodified and tradable. Trading of
innovations on the patent market allowed firms to sell the new inventions that fell outside
of their production scope and buy inventions that could be utilized by their production;

1Akcigit, Celik and Greenwood (2016) provides evidence that firms may generate new inventions that
are far away from the firms’ primary line of business. In this case, the inventions have less value to the
firms.

2For example, RC Cola was a small beverage company that introduced the first cola in a can and the
first diet cola. However, it quickly lost the advantage to Coca-Cola and Pepsi. De Havilland, the world’s
first commercial jet airliner, invented the Comet I jet 2 years before Boeing introduced the 707. However,
de Havilland was not able to capitalize its early invention. For more examples, please see Teece (1986)

3The LBD covers all US firms with paid employees.
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thus, making firms’ production scope contribute less to the value of their innovation.
This explains why innovating firms sharply decreased production scope in the 1980s and
1990s (Fact i). Small firms often have limited ability to monetize innovation through their
own production. Chances of selling innovation output on the patent market benefited
them more and incentivized them to increase innovation efforts. Large firms could rely
on small firms’ innovation by purchasing patents on the market and therefore decreased
innovation efforts. This explains why innovation activities shifted to small firms (Fact ii).

Two pieces of evidence provide direct support for the new hypothesis. First, the vol-
umes of patent trading activities ballooned after the early 1980s. According to the Patent
Assignment Dataset (PAD) from the USPTO, the citation-weighted share of patents traded
within 10 years of issuance increased from 23.2% in 1983 to 37.0% in 2000. This increase
shows that innovations have become more tradable. Second, the average matching rate
between the technology class of a patent and its inventing firm’s industry class declined
from 3.8% in 1981 to 2.2% in 2000.4 It suggests fewer innovations were utilized by the
firms that invented them.

The 1980s and 1990s witnessed two major changes related to patent trading—the
rise of information technology and a series of pro-patent reforms. Improvement in in-
formation technology allowed the USPTO to deploy the first automated search systems
for trademarks and patents in the 1980s, which significantly raised search capability and
reduced information frictions in trade. The pro-patent reforms include an extension of
patentability to genetic engineering and software and the creation of the Court of Ap-
peals for the Federal Circuit (CAFC) that vastly increased the winning opportunity of
patent holders in legal disputes by lowering invalidation rates. On the one hand, these
reforms incentivized firms to patent their inventions instead of hiding them as secrets,
therefore, decreased information frictions in trading innovation. The effect of patent pro-
tection on patent trade through information disclosure is discussed in Lamoreaux and
Sokoloff (2001) using historical data. On the other hand, those reforms allowed firms
with new inventions to extract more value in the trading process since it was less likely
that the potential buyers would use legal disputes to get the patent for free.

Other possible explanations are also considered for the observed specialization pat-
terns. First, the US government introduced a R&D tax credit in 1981 as part of the strate-
gies to increase the competency of US firms in the global market. The effective federal
subsidy rate increased from 5% before the 1980s to 24% in the 1990s, as documented in
Akcigit, Ates and Impullitti (2018). Combined with the booming patent trading market,

4The technology class of a patent is based on the 4-digit code of the International Patent Classification
(IPC); the firms’ industry class is based on the 6-digit NAICS code. This paper builds a concordance be-
tween the two using the method in Silverman (2002) and a link between the SIC and NAICS codes. Silver-
man (2002) bridges the patent technology classes with industries according to the usage of the technology.
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the R&D tax credit may have benefited small firms more as their R&D expense to do-
mestic sales ratio grew to be higher than large firms’ after 1985. Therefore, the tax credit
may have amplified the shift of innovation to small firms.5 Second, the cost structure of
production may have changed over time that directly affected firms’ production scope.
Recent papers like Hsieh and Rossi-Hansberg (2019) and De Ridder (2019) argue that the
rise of information technology increases the fixed cost for firms to enter new industries
but decreases the marginal production cost after entry. This may explain the observed
shrinkage of production scope.6 Third, good ideas may be getting harder to find, as ar-
gued by Bloom et al. (2020). This may have pushed innovating firms to focus efforts on
narrower fields of research and therefore production.

To evaluate the roles of the new hypothesis, as well as the aforementioned possible
explanations in the specialization patterns and economic growth, a quantitative model is
built with endogenous decisions of production scope and innovation effort. Distinct from
existing theories about innovation (e.g., Garcia-Macia, Hsieh and Klenow (2019)) where
the benefit from new ideas does not depend on production scope, the model in this pa-
per takes into account potential mismatches between innovation output and production.
A key tradeoff that an innovating firm faces when choosing its production scope is that
larger scope raises the probability that the firm’s innovation output is better matched with
its production and, therefore, increases the firm’s ability to monetize its inventions; but at
the same time, larger scope increases the management cost of the firm. The patent trading
market provides another channel for firms to benefit from their innovation besides pro-
duction but is subject to search frictions. When the matching efficiency increases and the
invalidation rate of patents in legal disputes decreases, the relative importance of produc-
tion versus trading in monetizing innovation changes. The effects are heterogeneous for
small and large firms. Small firms have limited production scope and benefit more from
selling patents; large firms have broader scope and benefit more from buying patents.
The model also entertains other explanations.

The developed model is first calibrated to an initial balanced growth path (1981-1985)
using the LBD, the SIRD, and the USPTO patent datasets. Key calibration targets include
production scope, the R&D expense-to-domestic sales ratio of large and small firms, the
share of patents traded, and the HP-filtered economic growth rate. Then, the model is
recalibrated to fit an ending balanced growth path (1996-2000), allowing changes in pa-
rameters relevant to the new hypothesis and the three alternative explanations. A decom-
position exercise is conducted to explore the contribution of each possible explanation by

5A further discussion of the impact of R&D subsidy and taxation policies can be found in Atkeson and
Burstein (2019) and Akcigit, Hanley and Stantcheva (2022).

6More specifically, their argument is that information technology makes production more scalable, but
adopting it is costly. This incentivizes firms to specialize in a narrow set of sectors and expand production
in their chosen sectors.
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looking at the changes in the key moments due to each relevant parameter. The decompo-
sition shows that higher patent trading efficiency and better patent protection can jointly
explain 20% of the observed production scope decrease and 108% of the reallocation of
R&D activities. The remaining part of specialization is primarily due to changes in the
production cost structure. The increased efficiency and protection result in a 0.64 percent
point increase in the annual growth rate, which makes them the main drivers of economic
growth in the 1980s and 1990s.

Besides adjusting production scope, firms may also target their innovation to their
production to improve matching between the two. One measure of the targeting be-
haviors of the innovation process is the share of basic research in total R&D spending.
Since basic research is defined as “an activity aimed at acquiring new knowledge or un-
derstanding without specific immediate commercial application or use,” higher basic re-
search share implies less targeted innovation.7 Using the Survey of Industrial Research
and Development (SIRD), this paper finds that basic research’s share increased in the
period when firms’ production scope narrowed, implying that firms’ innovation activi-
ties became less targeted. To check whether the new hypothesis can explain this trend, the
baseline model is extended to include two types of innovation, basic and applied research,
that differ in R&D costs, the probability of matching a firm’s own production scope, and
the importance of their output. Similar decomposition exercises are undertaken for the
extended model. The result shows that the changes in patent trading efficiency and pro-
tection can explain 105% of the increase in the basic research share. The intuition is that
basic research benefits more from patent trading as its output is harder to be utilized by
the firm’s own production.

Finally, this study uses regional and sectoral differences in firms’ exposure to the pro-
patent policies to test whether the pro-patent policy reforms are causes of the contraction
in firms’ production scope and the reallocation of R&D activities. The fraction of law-
suits invalidating the patents involved in legal disputes varied much across the twelve
regional circuit courts before the establishment of the CAFC in 1982, as pointed out by
(Henry and Turner (2006) and Han (2018)). The establishment of the CAFC significantly
lowered the regional invalidation rates and made them more uniform. So, regions with a
higher invalidation rate before the CAFC experienced a larger increase in the strength of
patent protection. Using a difference-in-difference (DiD) approach, it is found that firms
in regions with a higher pre-CAFC invalidation rate decreased production scope more.
Using a triple difference (DDD) approach with firm sizes being another dimension of the
difference, it is found that small firms in regions with a higher pre-CAFC invalidation
rate increased R&D intensity more, while large firms decreased it more. Furthermore, ge-
netic engineering and software were two of the most controversial fields of patentability

7This is the definition of basic research in the Survey of Industrial Research and Development (SIRD).
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in the 1970s. However, shortly before the establishment of the CAFC, the Supreme Court
approved patentability in these two fields in two landmark cases, setting precedents for
future cases. Therefore, these two fields experienced the most increase in patent protec-
tion strength and consistency in regional decisions. The share of firms’ employment in
these two fields before 1982 is used as a proxy for the exposure to the change in patent
protection. With a Triple-Difference (DDD) approach, a finding is that firms with higher
exposure were more likely to shrink production scope. These empirical results provide
evidence of causality from the patent reforms to the two specialization patterns.

Related Literature
This paper is closely related to the literature on the impacts of patent trading and intellec-
tual property rights (IPR) protection. The quantitative model in this study is based upon
Akcigit, Celik and Greenwood (2016), which analyzes how the propinquity between the
technology class of a firm’s new patent and its past patents affects the value of the new
patent to the firm and how a patent trading market shortens the propinquity. This paper
extends this work in a variety of directions to address the newly observed specialization
patterns. First, the paper introduces (endogenous) production scope and highlights that
mismatches between innovation and production are critical to firms’ boundary choices.
The interaction between innovation and production scope decisions is new to the liter-
ature. Second, the paper introduces heterogeneity in firm production ability (reflected
by size), which matters for the impact of patent trading. Production ability affects the
expected value the firm can extract from new ideas through production and determines
whether a firm benefits more from buying or selling patents. Third, the paper links patent
trading to a wide range of changes in the 1980s and 1990s, e.g., production scope, realloca-
tion and targeting behaviors of R&D. These linkages are novel. Other literature about the
trading of knowledge (Eaton and Kortum (1996), Perla, Tonetti and Waugh (2021)) stud-
ies the impact of technology adoption on firms’ innovation and growth but not on firms’
boundaries. Most discussions about the influence of IPR protection focus on the trade-
off between innovation incentives and inventors’ monopoly power (Mukoyama (2003),
Acemoglu and Akcigit (2012)). Some empirical studies suggest that the strength of the
patent system facilitates the disintegration of the innovation industries by allowing trade
in knowledge (Arora and Ceccagnoli (2006), Gans, Hsu and Stern (2008), Han, Liu and
Tian (2020)).8 However, as mentioned by Hall and Harhoff (2012), research in this area is
still limited. There are few systematic theoretical and quantitative analyses about the role
of IPR protection in firms’ specialization decisions.

Theoretically, this paper contributes to the specialization literature by incorporating
a new form of friction that determines firm boundaries between innovation and produc-

8A summary of the relationship between patents and innovation can be found in Moser (2013).

5



tion. According to Coase (1937), a comparison between market transaction costs and
firms’ internal organization costs determines the scope of a firm. The literature about
specialization has studied various forms of external and internal costs. Williamson (1985)
considers problems of incomplete contracts. Grossman and Hart (1986) and Costinot,
Oldenski and Rauch (2011) emphasize the role of contractual frictions in determining
firms’ boundary.9 Atalay, Hortaçsu and Syverson (2014) studies the determinants and
effect of vertical integration and diversification. Grossman and Helpman (2002), Boehm
and Oberfield (2020), and Bostanci (2021) discuss factors that affects firms’ outsourcing
decisions. Some papers (Chiu, Meh and Wright (2017), Baslandze (2016), Han (2018))
focus on frictions in the innovating sectors, but none of these papers considers how mis-
matches between innovation and production affect specialization.

Empirically, this research is related to the recent debates about US business dynamism.
Hsieh and Rossi-Hansberg (2019) find that the gap between the number of industries of
a top firm and that of an average firm is smaller in 2013 compared to 1977. They explain
these changes by introducing a new technology that raises the fixed costs but lowers the
marginal costs of production in the service industry. Related arguments about technolog-
ical changes are in Aghion et al. (2019), De Ridder (2019) and Autor et al. (2020). Inspired
by their research, the current study explores the specialization patterns more thoroughly
by looking at the number of industries per firm for all years from 1978 to 2016. Find-
ings are that all firms experienced a drop in the number of industries, and this drop was
mostly driven by firms that performed R&D activities. The quantitative analysis of this
paper supports the roles of both the increased tradability of intellectual properties and the
change in the production cost structure. Besides, the observation of scope shrinkage with
nearly constant average employment among the US firms in the 1980s and 1990s com-
plements the findings that the aggregate concentration of the US firms was stable (White
(2002)), but the within-industry concentration increased (Autor et al. (2020)).

This paper is also related to papers about growth slowdown after the 2000s (e.g., Ak-
cigit and Ates (2019) and Olmstead-Rumsey (2019)) by explaining why there was high
growth in the 1980s and 1990s. Consistent with a series of counterbalancing patent poli-
cies after 1999, the specialization patterns found in this paper also stabilized or reversed
after the 2000s.10 This suggests that specialization driven by patent protection and its im-
pact on growth should be considered in making the optimal intellectual right protection
policies, which is ignored in the current policy making process.

The rest of the paper is organized as follows. Section 2 presents the specialization

9A summary of the literature on firms’ boundary can be found in Holmstrom and Roberts (1998).
10For example, the American Inventor Protection Act in 1999 required patent applications to be made

public 18 months after being filed, regardless of whether patents were granted. This increased the risk of
patent infringement. In 2006, Justice Kennedy of the US Supreme Court cast aspersions on business method
patents, and the attitudes of the court system towards those patents became negative afterward.
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patterns. Section 3 introduces the pro-patent policies. Section 4 shows evidence of a
rising patent trading market and a declining matching rate between firms’ innovations
and production scope. Section 5 constructs an endogenous growth model with poten-
tial mismatches between innovation and production. Section 6 calibrates the model and
evaluates the contribution of each possible explanation. Section 7 extends the model to
include basic and applied research. Section 8 shows evidence of causality from the patent
reforms to the specialization patterns. Section 9 concludes.

2 Specialization Patterns

This section exhibits the trends of production scope and R&D activities of US firms. The
datasets involved are the Longitudinal Business Database (LBD) constructed by the US
Census Bureau;11 the Survey of Industrial Research and Development (SIRD) collected
by the US Census Bureau and the National Science Foundation (NSF); the Patent Data
Project (PDP) collected and cleaned by the NBER; the Compustat Historical Segments
and Fundamentals Annual. Appendix A provides more details about the data.

The LBD covers the universe of business establishments with paid employees in the
U.S. It has a consistent 6-digit NAICS code constructed by Fort, Klimek et al. (2016) for
each establishment and each year. This study uses the firm ID variable that identifies
the ownership of each establishment to aggregate the number of the 6-digit NAICS codes
of each firm and defines it as the production scope of a firm. Information about firms’
patenting activities comes from the PDP. It records all patents issued by the U.S. Patent
and Trademark Office from 1976 to 2006. A firm is classified as an innovating firm if it
has ever been granted a patent between 1976 and 2006.12 The SIRD provides R&D infor-
mation of a nationally representative sample of for-profit R&D-performing firms. Using
the sample weights in the survey, the Census Bureau and the NSF calculate countrywide
statistics each year and publish them on the Industrial Research and Development Infor-
mation System (IRIS). Both the LBD and SIRD use the Census Bureau’s Business Register
(BR) as the primary input to its sampling frame. According to DeSalvo, Limehouse and
Klimek (2016), a firm in the BR is defined as an economic unit comprising one or more
establishments under common ownership or control. The Compustat datasets are used
in robustness checks.

11Description of this dataset can be found in Jarmin and Miranda (2002).
12Although patenting is not the perfect measure of innovation activities, it is the best proxy in the data

that covers all US firms.
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Figure 1: Trend of Production Scope by Innovating Activities
Notes: This figure shows the average number of 6-digit NAICS codes owned by US firms by year and
innovating activities. The blue curve shows the trend for firms that have ever issued patents in the
sample years; the red curve shows the trend of firms that have never issued patents.
Sources: Longitudinal Business Database (LBD); the Patent Data Project (PDP).

2.1 Production Scope

Since NAICS is constructed on a production-oriented framework and defines industries
according to the similarity in the technology used to produce goods and services, the
production scope captures the number of technologies a firm uses in production.13 Figure
1 shows the average production scope of US firms with paid employees from 1978 to
2006 by whether they have ever issued a patent recorded by the PDP (innovating firms
vs. others).14 The scale for innovating firms is shown on the left y-axis, while the scale
for other firms is shown on the right. Innovating firms produced in 3.07 6-digit NAICS
industries on average at the beginning of the 1980s. This number experienced a sharp
decrease by one-third to around 2.05 at the end of 1990s and then rebounded slightly
after 2000. Other firms’ production scope also decreased, but to a much lesser extent.15

The finding that production scope of US firms decreased before the 2000s and increased
afterwards is consistent with the trend discovered in Hoberg and Phillips (2022) using
text-based analysis of firm 10-Ks, although their data starts in 1990 and ends in 2016.16

13NAICS is not market-oriented and thus does not capture the number of products produced by the same
technology. For more information about NAICS, see https://www.census.gov/naics/reference_files_

tools/2022_NAICS_Manual.pdf
14The data point for the year 2002 is omitted because, in the version of the LBD data available to the

author of this paper, there is a problem in the scope statistics in 2002. Economists from the Census Bureau
confirm that the newest version does not have the problem.

15Note that the average number of establishments per firm increased in the same period. So, the decrease
in the number of industries was not due to firms having fewer establishments.

16Hoberg and Phillips (2022) focused on explaining the scope increase after the 2000s while this paper
focuses on the scope decrease before the 2000s.
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This paper does two checks. First, it looks at the trend of production scope with
firm-size controlled and finds that innovating firms had a larger drop in scope than non-
innovating firms of the same size.17 Second, the paper deletes the auxiliary establish-
ments (establishments that perform management and support services to other establish-
ments) and repeats the exercises above. The results are very similar.18

2.2 Innovation Activities

Figure 2a shows the ratio of total R&D spending by large firms to total R&D spending by
small and medium firms. Here, a firm is regarded as small or medium if it has no more
than 999 employees, while a large firm has at least 1000 employees. This ratio started to
drop after the early 1980s and stabilized after 2000, indicating that US R&D activities have
shifted from large to small and medium firms. To look at the intensive margin, Figure 2b
displays the R&D intensity of US R&D performing firms by size. The R&D intensity is
defined by the ratio of the aggregate R&D cost (excluding the federally funded part) of
R&D performing firms to the net domestic sales of those firms. As shown in Figure 2b,
the R&D expense-to-domestic sales ratio of small and medium firms started to surge after
1980, and the rising trend stopped after 2000.19 In the same period, the ratio of large firms
slightly decreased. These diverging trends suggest that small and medium firms became
more focused on innovation, while large firms more focused on non-innovation activi-
ties. To address the potential misreporting problem of R&D expenses, this paper checks
another measure—the ratio of the number of citation-weighted patents to the number
of employees for large and small/medium firms with patents in the LBD. The trend is
shown in Figure 7 of the Appendix B.2, and the implications are very similar. According
to Baumol (2002) and Akcigit and Kerr (2018), small firms has a comparative advantage
in creating new ideas, while large firms are better at exploiting values from innovations
through production and commercialization. The two panels of Figure 2, therefore, sug-
gest that firms spent more efforts on areas where they had comparative advantage.20 This
paper also looks at R&D intensity by firm age and finds that the diverging patterns are
not as salient as the trends by size, showing that firm size is the main force behind the
divergence in R&D intensity.

17Section B.1 of the Appendix describes the methods and plots the trend in Figure 6.
18Figures of production scope after deleting auxiliary establishments are available upon request.
19The increase in the R&D expense-to-domestic sales ratio was more salient for smaller firms (e.g., firms

with less than 100 employees or less than 50 employees).
20In the following sections, this paper will call all the non-innovation activities as production. Therefore,

production indicates all activities that are complementary to innovation.
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(a) Total R&D Expense Ratio (b) R&D Intensity by Size

Figure 2: Trends of R&D Activities
Notes: This figure shows R&D spending by firm size. Panel (a) displays the ratio of total R&D spend-
ing by large firms to total R&D spending by small and medium firms. Panel (b) displays the R&D-
spending-to-domestic-sales ratios by firm size.
Source: Survey of Industrial Research and Development (SIRD).

2.2.1 Robustness Checks

The increase in R&D intensity among small firms may be attributed to the surge in ven-
ture capital (VC) activity during the 1990s, which heavily targeted small, private compa-
nies. Consequently, the shift in R&D activity across firm sizes may be more pronounced
in sectors with high VC activity. To address this concern, this paper examines the R&D-
to-sales ratio by sector and firm size distribution using Compustat data, which is less
influenced by private equity investments such as VC. The analysis reveals that the shift
in R&D from large to small firms is a widespread phenomenon across major industries
and is primarily driven by firms smaller than the 25th percentile (157 employees in the
dataset) of the size distribution. Further details of the robustness checks are provided in
Appendix B.3.

3 Driving Forces

The two decades (the 1980s and 1990s) that witnessed the specialization wave described
in the previous section also experienced important technological improvement and policy
reforms in the United States. These changes have significantly affected the patent market.

3.1 Technological Improvement

The rise of the information technology enabled the USPTO to transit from a paper search
system to an automated search system for US patents and trademarks in the 1980s. Ac-
cording to the USPTO report, before the transition, a searcher needed to “look at the daily
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updated Patent Locator to identify the Patent Search Room stack location(s) of the re-
spective class(es)/subclass(es)” and then “remove all the paper copies of the patents in a
class/subclass to be searched from the stack location and take them to a desk and look
through them.”21The availability of an electronic system largely facilitated the search pro-
cess. Since potential buyers in patent trading needs to attain sufficient information about
the focal patent, the transition of the search system reduced the frictions in patent trade.

3.2 Policy Reforms

In the 1970s, the innovation activities in the U.S. were thought to fall behind other in-
dustrialized countries (Meador (1992)), so a series of policies were adopted to stimulate
innovation and boost economic growth. Besides introducing the R&D tax credits at the
federal level in 1981, the US government adopted a series of pro-patent reforms starting at
the beginning of the 1980s that strengthened the protection of intellectual property rights.
The US legal environment towards patents became increasingly positive in the following
two decades until some counterbalancing new policies came out at the end of the 1990s.
This paper will describe two major pro-patent policies starting in the 1980s.22

Extension of Patentability to Genetic Engineering and Software. The US Supreme
Court’s decision in 1980 in the case between Diamond and Chakrabarty approved the patent-
ability of genetically engineered bacteria. The 1981 decision in Diamond v. Diehr affirmed
patent protection of software. Bioengineering and software became two heavily patented
areas then. The overall patent applications and issuances both doubled between 1980 and
2000 after a long stable phase before 1980.
Creation of the Court of Appeals for the Federal Circuit. Before 1982, legal disputes
of patents were heard at district courts or regional appellate courts, which did not have
consistent enforcement of the patent law across regions. The establishment of the Court
of Appeals for the Federal Circuit (CAFC) in 1982 provided centralized patent jurisdic-
tion. More importantly, it largely decreased the patent invalidation rates in legal dis-
putes (Henry and Turner (2006), Han (2018)). The fraction of lawsuits that invalidated
the patents involved plummeted from around 55% to 28% after the change in the court
system.23 The legal disputes of patents usually arise because one party is not willing to
pay for using the patents another party (the patent holder) created. The party that wants
the patents then sues the patent holder by claiming its patents are invalid. The invalida-
tion rates of the court therefore captures the probability that the plaintiff wins the case
and uses the patent for free. A lower invalidation rate indicates the court has stronger

21The full version of the report, “Report to Congress on the Removal of Classified Paper From the
USPTO’s Public Search Facilities,” can be found on the USPTO website.

22A thorough description of the policy changes can be found in Gallini (2002).
23The full trend of the invalidation rates is shown by Figure 10 in Appendix B.4.
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protection toward the patent holders’ benefit.24

4 Patent Trading and Innovation Mismatch

4.1 Patterns of Patent Trade

Following technological and policy changes, the patent trading market experienced rapid
growth, signaling that innovations became more tradable. Using the Patent Assignment
Dataset (PAD) in conjunction with the Longitudinal Business Database (LBD),25 this pa-
per calculates the fraction of patents granted to U.S. firms each year that were ever subse-
quently traded through sales or mergers and acquisitions (M&As). The analysis reveals
an increase in this fraction from 29.16% in 1983 to 38.73% in 2000. When weighted by
patent citations, the increase is even more pronounced, rising from 30.99% in 1983 to
45.9% in 2000. Figure 3a presents a decomposition of patent trades (not weighted by cita-
tions) by timing, showing that the majority of the increase is attributable to early transac-
tions—further evidence of enhanced trading efficiency.26

The pattern of patent trade for all patents granted by the USPTO (not limited to those
granted to U.S. firms) exhibits a similarly rising trend. The trends are also similar for the
fraction of patents transacted through sales and through M&As respectively, with the vol-
ume of M&As consistently accounting for approximately one-tenth of that of sales. Fur-
ther details are shown in Figure 11b in Appendix B.5. Besides patent transactions, patent
licensing activities also ballooned after 1980, as indicated by the rising trends of licensing
fees and royalties presented in Arora and Gambardella (2010). Therefore, the increase in
patent transactions through sales adn M&A should be viewed as a lower bound of the
estimation for the increase in trading activities of innovations. Regarding who traded the
patents, the main argument of this paper is consistent with the finding by Akcigit and
Ates (2019) that a larger share of patents were traded from small firms to large firms.

4.2 Patterns of Mismatch Between Innovation and Production

The growth of the patent trading market was accompanied by a declining trend in the
matching rate between patents’ technology classes and the production scope of their in-

24The ratio of the number of patent-related circuit court decisions to the number of patents-in-force have
remained constant since 1980 (Marco et al. (2015)), showing that there was no clear change in the propensity
of litigation (through circuit court decisions) after the reform.

25The PAD, collected by the USPTO, strives to maintain a comprehensive history of claimed interests in
patents. For an introduction and statistical overview of this dataset, see Marco et al. (2015).

26Decompositions using citation-weighted patent trade fractions are presented in Figure 11a in Appendix
B.5, which exhibit similar patterns.
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(a) Fraction of Patents Involved in Trading (b) Trend of the Matching Rate

Figure 3: Trading of Innovations and Matching with Production
Notes: This figure provides supporting evidence for the new hypothesis. Panel (a) illustrates the share
of patents issued each year that were traded through sales or M&As within specific time windows: up
to 4 years prior to issuance, 1–5 years post-issuance, 6–10 years post-issuance, and more than 10 years
after issuance. Panel (b) displays the average likelihood that a firm’s innovation output matches its
production in each year.
Source: Patent Assignment Dataset (PAD); Longitudinal Business Database (LBD).

venting firms. The matching rate is defined as the ratio of the citation-weighted num-
ber of newly granted patents whose technology classes align with their inventors’ in-
dustry classes to the citation-weighted total number of newly granted patents each year.
This alignment between technology classes and industry classes is determined using the
methodology in Silverman (2002) and a concordance linking SIC and NAICS codes. As
shown in Figure 3b, in 1981, 3.8% of new patents fell inside of their inventing firms’ pro-
duction scope, while in 2000, the ratio decreased to 2.2%.27 This trend implies that a firm’s
production has become less of a restriction to the usage of its innovations.28

The increased trading of innovations and decreased matching rate between a firm’s
innovation and production show that the market provides another channel for firms to
monetize their R&D output.

4.3 Relationship between Patent Trade and Matching between Innova-
tion and Production

To further investigate the relationship between patent transactions and the alignment of
innovation with production, this paper estimates regressions using a dummy variable
indicating whether a patent is transacted as the dependent variable. The key independent

27The unweighted ratio has the same trend and is available upon request.
28The decrease in the matching rate should not be due to changes in definitions of technology classes and

industries over time versus the invariant concordance used. The concordance built by Silverman (2002) is
based on the technology classes and industries in the early 1990s. So, if the invariant concordance used has
any effect, we should predict the matching rate to be the highest in the early 1990s.
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variable captures the likelihood that the patent falls within the production scope of its
inventing firm. The regressions control for the patent’s number of citations, its 4-digit
IPC classification, and the firm’s number of employees, according to Serrano (2010).

The results are presented in Table 1. Columns (1) and (2) document patent transac-
tions up to the end of the data period, while Columns (3) and (4) focus on transactions
occurring within five years of the patent’s issuance. Columns (5) and (6) examine trans-
actions within ten years of issuance. Additionally, Columns (2), (4), and (6) incorporate
firm and year fixed effects. Across all specifications, the results consistently show a signif-
icantly negative relationship between the probability of being within the firm’s produc-
tion scope and the likelihood of patent trade. This indicates that patents falling outside a
firm’s production scope are more likely to be transacted. These findings hold not only in
the cross-sectional analysis but also when controlling for firm and year variations.

Table 1: Patent Transactions and Innovation-Production Mismatch—Relationship

Dependent Variable Ever Transacted Transacted in 5 Years Transacted in 10 Years
(1) (2) (3) (4) (5) (6)

Within Scope -0.0593** -0.0890*** -0.0375* -0.0625*** -0.0567** -0.0878***
(0.0290) (0.0158) (0.0201) (0.0156) (0.0287) (0.0159)

Ln(Citations) 0.0178*** 0.0186*** 0.00807*** 0.0120*** 0.0185*** 0.0188***
(0.00132) (0.000899) (0.00204) (0.00101) (0.00133) (0.000907)

Ln(Employment) 0.00501*** 0.00492*** 0.00362*** 0.00304** 0.00510*** 0.00510***
(0.00127) (0.00135) (0.00129) (0.00150) (0.00126) (0.00135)

4-digit-IPC fixed effect YES YES YES YES YES YES
Firm fixed effect NO YES NO YES NO YES
Year fixed effect NO YES NO YES NO YES
Observations 1,646,000 1,646,000 1,646,000 1,646,000 1,646,000 1,646,000
R-squared 0.028 0.332 0.021 0.298 0.028 0.330

Notes: The dependent variable is a binary indicator for whether a patent is transacted: (1) by the end of
the data period, (2) within 5 years, or (3) within 10 years. “Within Scope” measures the likelihood that
a patent’s IPC aligns with its inventing firm’s industries. All columns control the patent’s 4-digit-IPC
fixed effects. Columns (2), (4), and (6) further control firm and year fixed effects. Standard errors are
clustered by the patent’s 4-digit IPC code. To comply with Census Bureau disclosure requirements, the
number of observations is rounded to the nearest thousand.
Source: Patent Assignment Dataset (PAD); Longitudinal Business Database (LBD).

5 Model

To explore the driving forces of the observed specialization phenomena and their effects
on economic growth, a model is constructed in this section. In the model, there are po-
tential mismatches between a firm’s innovations and its production. Firms endogenously
choose their production scope, R&D intensity, and whether to buy or sell innovation out-
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put on the patent market. The patent market is subject to search frictions, the efficiency
of which and the bargaining power between buyers and sellers depend on the searching
technology and legal environment towards patents. There are two types of production
ability, which reflect firms’ comparative advantage in innovation or production. Firms
with a high production ability can extract higher value from new inventions through pro-
duction and, on average, have larger size. Decisions of different types of firms are affected
differently by patent trading, R&D tax credit rates, production cost structure, as well as
the cost of new ideas.

5.1 Setup

There is a unit measure of firms in this economy, and each is exogenously and uniformly
centered at a point on the industry circle shown in Figure 4. The industry circle contains
all the industries in the economy and is assumed to have a radius of 1

2π . At the beginning
of each period, a firm chooses its production scope (ω)—the set of industries in which it
will produce goods and services. Figure 4 shows an example of a firm that is centered at
the top of the circle and chooses the arc ω as its production scope.29 The absolute value
of ω, |ω|, stands for the number of industries the firm produces in and will be used in the
following analysis. As the model only focuses on the symmetric equilibrium, the location
of the center turns out to be irrelevant to firms’ decisions.

Figure 4: Schematic Diagram of the Industry Circle and Production Scope
Notes: This figure shows an example of a firm that is centered at the top of the industry circle and spans
its scope symmetrically around its center.

A firm goes through two major stages of operation after the scope is determined:
innovation and production.30 The key assumptions of the model are twofold. First, the
location of the innovation output cannot be entirely controlled by the firm, and therefore

29Whether the set of industries is connected is not assumed ex-ante, but will be solved from the model
based on assumptions that will be unfolded later.

30The model can add a non-innovating sector whose productivity is dragged by the innovating sector,
as what is done for the non-VC sector in Greenwood, Han and Sanchez (2022). The non-innovating sector
captures firms that only adopt existing technology (they do not need to buy patents since most of the
technology they use has passed the patent term.) The results in this paper will not change.
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it may not necessarily fall inside the firm’s production scope. Second, the firm cannot
adjust its scope after the innovation stage and can only utilize the innovation output that
matches its production scope. Between the two stages, firms can trade innovations on
the patent market subject to a search and matching process. They can sell the innova-
tion created by themselves and buy patents that match their production scope through
an intermediary agent. A patent held by an agent persists over time with a probability
of δ. This framework of trading patents via agents is consistent with the approach in
Akcigit, Celik and Greenwood (2016) and closely reflects real-world practices. There are
two exogenous changes in the search and matching process. (i) The matching efficiency
increases. (ii) The invalidation rate of patents in legal disputes decreases, which, as will
be shown later, is similar to a rise in the bargaining power of the patent sellers.

Each firm in this economy is characterized by production ability (m) and an inno-
vation level (z). The production ability has two statuses, high (mH) and low (mL). The

transition of statuses across periods is subject to a Markov process, Qmm′ =

[
qHH qHL

qLH qLL

]
.

In the stationary distribution, the shares of firms that have high and low production abil-
ity are respectively αH and αL. The innovation level is updated in each period according
to the law of motion,

z′ = z + γ(1(RD∈ω)1k(m, z; z) + B)z, (1)

where 1(RD∈ω) is an indicator of whether the firm’s innovation falls inside of its pro-
duction scope. 1k(m, z; z) is an indicator that equals to 1 if the firm keeps its within-scope
innovation. B is an indicator of whether the firm buys a patent that matches its scope. It is
assumed that at most one idea can be implemented in each period, so 1(RD∈ω)1k(m, z; z)
and B are exclusive. γ is a constant lock-step growth of the innovation level. z is the
employment-weighted average innovation level of the economy, defined by,

z =

∫ ∫
mzdF(m, z; z)

αHmH + αLmL
, (2)

where F(m, z; z) is the joint distribution of production ability and innovation levels among
all firms at the end of the previous period.

The timing of events in each period is shown as follows:

m, z

Choose ω R&D with i

1(RD∈ω) realizes

Search & trade ideas

z′ realizes

Production

A firm starts a period with the newly realized production ability (m) and the innova-
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tion level (z) inherited from the end of the previous period. The value of the firm at this
stage is denoted as V(m, z; z). The firm chooses the production scope ω according to an
increasing and convex management cost function in the number of industries,

Ce(ω; z) = µ|ω|1+ιzζ/(ζ+λ)/(1 + ι), ι > 0. (3)

where µ and ι capture the shape of the cost function and are exogenous. ζ and λ are
respectively the profit and labor share in the production function, as will be shown later.

After the scope is chosen, the firm begins to do R&D. This innovation process has a
success rate of i, which is endogenously determined by the firm and also subject to an
increasing and convex cost function,

Ci(i; z) = χi1+ρzζ/(ζ+λ)/(1 + ρ), ρ > 0. (4)

where χ and ρ capture the shape of the cost function and are exogenous. Both the man-
agement and innovation cost functions rise with the economy-wide innovation level, z.

Whether the innovation process succeeds realizes then, together with the location of
the output. The output is useful to the firm’s own production only if it locates inside
the scope. Firms that fail to innovate search for patent agents on the market as potential
buyers. Firms that successfully innovate, but the innovation output is useless, sell the
patent to an agent in a competitive market at the price q(z), which is determined in the
equilibrium. Simultaneously, they search for agents holding patents that align with their
production scope. Firms that successfully innovate within their scope also have the op-
tion to sell their patents to agents. If they choose to do so, they can simultaneously act
as buyers, searching for patents that complement their production needs. A patent agent
can only process one patent at a time, and is searching for potential buyers. It is assumed
that each patent agent and buyer have one unit of search effort. Agents spend their whole
effort searching at the location of their patents; buyers evenly distribute their effort over
their production scope. For any arc, d, on the industry circle, this paper denotes the total
search effort on the arc by agents and by buyers respectively as na(d) and nb(d). The total
number of matches on the arc is

M(na(d), nb(d)) = ϕna(d)νnb(d)1−ν, (5)

where ϕ represents the matching efficiency, which is subject to exogenous changes. ν is
the exponent. The odds of a successful match for an agent can be expressed as

s = lim
|d0|→0

ϕ
(nb(d0)

na(d0)

)1−ν. (6)
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where d0 is the neighborhood that spans symmetrically around the location of the seller’s
patent. The reason for taking the limit is that each agent is selling at only one point on
the industry circle—the location of its patent. Since the model will only focus on the
symmetric equilibrium, the location of the patent is not tracked. The odds of a successful
match for a potential buyer depend on a function of the arc it searches over (its scope, ω),

b(ω) = ϕ
(na(ω)

nb(ω)

)ν. (7)

Finally, the new innovation level of the firm realizes according to the law of motion
in (1). At the production stage, a firm maximizes its overall profit by choosing the optimal
amount of capital and labor. The production function exhibits decreasing return-to-scale
with regard to capital and labor. The profit, capital, and labor shares sum up to 1 (ζ +

η + λ = 1). Capital is hired at the rental rate r̃, and labor is hired at the wage rate w.
It is assumed that goods in different industries are perfect substitutes and industries are
symmetric. Denote the total capital and labor of the firm as k and l (the capital and labor
in each industry is, therefore, k

|ω| and l
|ω| ). The firm’s optimization problem is

π(ω, m, z′; z) = max
k,l

(mz′)ζkη lλ − r̃k − wl. (8)

The production function suggests that firms with a higher production ability (m) get more
profit at any given innovation level.

5.2 Consumer Preference

A representative household in this economy maximizes the lifetime utility,

∞

∑
t=0

βt c(t)1−ϵ

1 − ϵ
.

where c(t) is consumption in period t, β is the discount rate of the future, and ϵ is the
degree of risk aversion of the household. The household owns and rents capital to all the
firms in this economy, which generates both a profit and a risk-free rate of capital return,
1
r , in each period. The depreciation rate of capital is δc. So, the rental rate of capital, r̃, is
1
r − 1 + δc. The household also provides one unit of labor to firms, from which it earns a
wage rate w(t). The government levies a lump-sum tax, T, on the household to sponsor
the R&D subsidy.
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5.3 Firm Decisions

This section solves firms’ decisions in backward order. At the final production stage, the
first-order condition derives

k(ω, m, z′; z) = mz′(
η

r̃
)1+ η

ζ (
λ

w
)

λ
ζ ; (9)

l(ω, m, z′; z) = mz′(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ . (10)

π(ω, m, z′; z) = mz′(1 − η − λ)(
η

r̃
)

η
ζ (

λ

w
)

λ
ζ . (11)

The independence of total input and profit on the production scope implies that firms ei-
ther span a wide range of industries but only touch on each of them, or focus on a narrow
range of industries and deepen production in them. This independence is consistent with
observations in the data, that US firms deepened production in fewer industries without
changing much the total employment. The average employment of US firms was similar
between the beginning of the 1980s and the end of the 1990s, even though the average
number of industries was much lower at the latter period.31

The decision of R&D expenses is equivalent to determining the success rate (i) of
innovation, as there is a one-to-one mapping between the two. Denote the value of a firm
before the R&D decision as D(ω, m, z; z), taking the production scope as given. Then,

D(ω, m, z; z) =max
i

{iX(ω)1k(m, z; z) [π(m, z′; z) + rEV(m′, z′; z′)]︸ ︷︷ ︸
Innovate and produce within ω

+ (1 − iX(ω)1k(m, z; z)) [b(ω)(π(m, z′; z)− pb(m, z; z) + rEV(m′, z′; z′))]︸ ︷︷ ︸
Buy an idea within ω

+ (1 − iX(ω)1k(m, z; z)) [(1 − b(ω))(π(m, z; z) + rEV(m′, z; z′))]︸ ︷︷ ︸
No idea within ω

(12)

+ i(1 − X(ω)1k(m, z; z)) q(z)︸︷︷︸
Sell an idea

−(1 − σ)Ci(i; z)},

where the function X(ω) is the probability that the firm’s innovation output falls inside
its production scope, ω. It is assumed that (i) the closer an industry is to the firm’s core
business (center), the larger the probability the firm’s inventions match that industry and
generate value to the firm.32 (ii) X(|ω|) = ξ|ω|ψ with ξ > 0 and 0 < ψ < 1 if ω spans

31To be more specific, the average employment of US firms first decreased in the 1980s and then re-
bounded in the 1990s. The levels at the start and the end were similar.

32This assumption is supported by the empirical findings in Akcigit, Celik and Greenwood (2016) that
the propinquity between a patent’s technology class and the firm’s main line of business positively affects
the value of the patent to the firm.
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symmetrically around the firm’s center.33 In the following analysis, X(|ω|) will denote
the relationship between the within-scope probability and the length of the production
arc, given that the arc is symmetric around the center.

D(ω, m, z; z) consists of five components, the first four of which describe the benefit
of innovation in four different scenarios, while the last one of which is the innovation
cost when the R&D tax credit rate equals to σ. The first scenario happens when the firm’s
innovation is successful, the output falls within the firms’ production scope, and the firm
keeps and uses the innovation in its own production. The firm then updates its innovation
level according to the law of motion described in (1). π(m, z′; z) is the profit in the current
period with the updated innovation level (z′). rEV(m′, z′; z′) is the discounted future
value of the firm at the beginning of the next period. The second and third scenarios
happen when the firm does not use its own R&D output, either because the innovation
fails, or the innovation output does not match the firm’s production scope, or a within-
scope innovation is sold. The firm then searches on the patent market as a potential buyer.
With probability b(ω), the firm matches with a patent agent. It buys the patent at a price
pb(m, z; z) and updates its innovation level with the patent, as captured by the second
scenario. With probability, 1 − b(ω), the firm cannot find an agent, and therefore, its
innovation level is not updated, as captured by the third scenario. The fourth scenario
happens when the firm’s R&D process succeeds, but the output falls outside the firm’s
own production scope, or a within-scope innovation is sold. In this case, the firm sells the
patent to an agent. Once the patent is sold, the firm cannot use it any more. The decision
of keeping or selling a within-scope innovation is made according to

1k =


1 π(m, z′; z) + rEV(m′, z′; z′) ≥

b(ω) (π(m, z′; z)− pb(m, z; z) + rEV(m′, z′; z′))

+ (1 − b(ω)) (π(m, z; z) + rEV(m′, z; z′)) + q(z);

0 Otherwise.

(13)

Denote the value of an agent under the average innovation level, z, as A(z). The
determination of the buying price of a patent, also the transaction price, is through Nash
bargaining, which can be described as follows,

pb(m, z; z) =arg max
pb

[pb − rδA(z′)]θ[π(m, z′; z) + rEV(m′, z′; z′)− pb

− (π(m, z; z) + rEV(m′, z; z′))]1−θ.
(14)

The buyer and the agent choose the transaction price (pb) to maximize the product of their

33As shown in Table 16 in Appendix D.2, the empirical estimation of X(|ω|) confirms this assumption.
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surpluses. The agent’s surplus is the transaction price minus the future value of retain-
ing the patent. The buyer’s surplus is the increase in the firm’s value resulting from the
updated innovation level, net of the payment, compared to its value at the original inno-
vation level. θ represents the agent’s bargaining power in the transaction. Importantly,
the buyer’s surplus, and consequently the transaction price, depends on the buyer’s type.

Since agents cannot predict the type of buyers they will encounter, the price they offer
to patent sellers, q, should be equal to the expected value of the patent. The distribution of
types of potential buyers on the market is denoted as G(m, z; z′) and will be determined
endogenously in the equilibrium. The price, q, can be expressed as

A(z) = s
∫ ∫

pb(m, z; z)dG(m, z; z) + (1 − s)rδA(z′). (15)

The decision of the production scope at the beginning of each period is based on the
tradeoff between the benefit and cost. The production scope, on the one hand, affects the
ability that a firm monetizes its innovation output, and on the other hand, determines the
management difficulty. The optimal scope solves,

V(m, z; z) = max
ω

D(ω, m, z; z)− Ce(ω; z), (16)

where Ce(ω; z) is the management cost function as introduced in the model setup.
The government budget constraint can be expressed as the following,

T = σ
∫ ∫

Ci(i(ω(m, z; z), m, z; z); z))dF(m, z; z). (17)

5.4 Equilibrium

This paper focuses on a symmetric-balanced-growth-path (SBGP) equilibrium, where the
employment-weighted average growth rate of the innovation level in the economy and
the ratio of the average innovation level of firms with high production ability to that of
firms with low production ability are constants. The variables in this equilibrium can
be expressed as functions of the model parameters and are displayed in the following
proposition. The proof is unfolded in Appendix C.1.

Proposition 5.1 (Symmetric Balanced Growth Path). There exists a symmetric balanced growth
path of the following form:
1. The employment-weighted growth rate of the aggregate innovation level, g, and the ratio of the
average innovation level of firms with high production ability to that of firms with low production
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ability, o, defined respectively by

g =

∫ ∫
m′z′′dF(m′, z′)/

∫ ∫
m′dF(m′, z′)∫ ∫

mz′dF(m, z)/
∫ ∫

mdF(m, z)
; o =

∫
z′dF(m, z)|m=mH∫
z′dF(m, z)|m=mL

,

are constants.
2. The interest factor r = β/gϵζ/(ζ+λ); the rental rate on capital r̃ = gϵζ/(ζ+λ)/β − 1 + δ.
3. The odds of a successful match for a potential buyer, b(ω), and for a potential seller, s, only
depend on the total number of patent buyers and sellers, i.e., b(ω) = ϕ(na

nb
)ν, s = ϕ(nb

na
)1−ν.

4. The production scope of each firm spans symmetrically around the center, and the length of the
scope depends only on the production ability of the firm, i.e., |ω(m, z; z)| = Ω(m).
5. The R&D success rate does not depend on the firm’s innovation level, z, or the economy-wide
innovation level, z, i.e., i(ω, m, z; z) = i(ω, m).
6. The government budget constraint is,

T = σ(αHCi(i(Ω(mH), mH)) + αLCi(i(Ω(mL), mL))).

7. The value function V(m, z; z) is linear in z̃ and z̃, i.e., V(m, z; z) = v1(m)z̃ + v2(m)z̃. The
value of an agent is linear in z̃, i.e., A(z) = az̃. z̃ = z/zλ/(ζ+λ) and z̃ = zζ/(ζ+λ).
8. Keeping or selling a within-scope innovation only depends on the firm’s production ability, m.
9. The number of buyers of both types (nbH, nbL) and the number of agents (na) are

nbH = αH(1 − i∗(ω∗(mH), mH)X(ω∗(mH))1k(mH));

nbL = αH(1 − i∗(ω∗(mL), mL)X(ω∗(mL))1k(mL));

na =
αLi∗(ω∗(mH), mH)(1 − X(ω∗(mH))1k(mH)) + αLi∗(ω∗(mL), mL)(1 − X(ω∗(mL))1k(mL))

1 − δ(1 − s)
.

10. The buying price and the expected selling price of a patent is

pb(m, z; z) = θ(Jm +
r

gλ/(λ+ζ)
E[v1(m′)|m])γz̃ + (1 − θ)rδag

ζ
ζ+λ z̃;

q(z) = A(z) = az̃,

where both A and a are constants.

The intuition of the matching rate of a potential buyer only depending on the total
number of buyers and agents is that firms are endowed with the same unit of search
effort and have to dilute their effort at each point of the arc they search over. Therefore,
although firms with different production scope have different chances of getting an in-
scope idea if their innovation succeeds, they have equal opportunities to get an idea on
the market. Besides, the matching rate of an agent is also the same, as on each point of
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the industry circle, there are equal number of buyers and agents.
The R&D success rate does not rely on individual and aggregate innovation levels

because both the benefit and the cost of R&D depend only on the aggregate innovation
level of the economy and the aggregate level cancels out in the calculation. The irrele-
vance of the R&D success rate with the innovation levels results in the production scope
only relying on firms’ production ability.

5.5 Relevant Parameters for Specialization

According to the analysis in the previous section, changes in the patent trading environ-
ment, the R&D tax credit rate, the production cost structure, and the difficulty in finding
good ideas may be potential reasons for the observed specialization patterns. Parameters
in the model that correspond to these changes are listed here.

The matching efficiency of the patent market, ϕ, reflects information frictions in the
trading process. Technologies that reduce the search cost and policies that make inven-
tions more visible on the market are predicted to raise the matching efficiency. The bar-
gaining power of patent sellers, θ, reflecting protection towards patent holders, is directly
related to the invalidation rate of patents. As shown in Section 3, the invalidation rate
captures the probability that a buyer gets a patent for free through legal disputes. Denote
the invalidation rate as f , then the transaction price is 0 with probability f . Therefore, the
average buying price of patents is,

pb(m, z; z) =θ(1 − f )[π(m, z′; z) + rEV(m′, z′; z′)− (π(m, z; z) + rEV(m′, z; z′))]

+ (1 − θ)(1 − f )rδA(z′).
(18)

A lower invalidation rate increases the buying price of patents, which is similar to higher
bargaining power of the patent holder.

The R&D tax credit is directly captured by σ. A higher fixed cost of entering new
industries corresponds to a larger scale and elasticity parameters in the management cost
function (µ and ι in equation (3)). As the production function at the final stage is DRS to
total production factors, and the total factors are the product of the number of industries
and factors in each industry, decreasing the number of industries raises the marginal ben-
efit of scaling production in each industry. It indirectly captures the decreasing marginal
cost of production in an industry after entry, as proposed in the previous literature (Hsieh
and Rossi-Hansberg (2019), etc.). Finally, the difficulty of finding good ideas is captured
by the step size of innovations (γ) and the parameters (χ and ρ) in the R&D cost function.
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6 Quantitative Analysis

The main goal of this section is to quantify the relative importance of the key drivers of
the specialization patterns and their effects on economic growth. In particular, this study
focuses on the four possible explanations: increased tradability of innovations (through
both higher trading efficiency and better patent protection), the rise in the R&D tax credit
rate, changes in the production cost structure, and changes in the difficulty of finding
ideas. The quantitative analysis is undertaken in the following steps. First, the parame-
ters in the model are set to fit data moments in the initial balanced growth path period,
1981-1985. This is the period of the paper search system used by the USPTO and the be-
ginning of the policy reforms. Then, the relevant parameters as analyzed in Section 5.5
are changed to make the model fit the moments in the ending balanced growth path pe-
riod, 1996-2000, with other parameters fixed in this process. This is the period when the
electronic search system was widely used, occurring before the implementation of coun-
terbalancing patent policies in the early 2000s. Untargeted moments are used to check
the quality of the calibration. Finally, changes in firms’ specialization decisions and the
economic growth rate are decomposed into the contribution of each relevant explanation.

6.1 Calibration

There are eighteen parameters, {η, λ, ϵ, β, δ, αH, αL, χ, σ, mH, mL, ν, γ, ρ, θ, µ, ι, ϕ}, a transi-
tion matrix Qmm′ , and a function, X(ω), to be calibrated in the model. They are grouped
into three categories. The first category comes from a priori information, as shown in
Table 2. The capital and labor share (η and λ) are set respectively to be 0.28 and 0.57 (1/3
and 2/3 multiplied by a return to scale factor of 0.85). The profit share (ζ) is then 15%,
which is consistent with the discussion in Guner, Ventura and Xu (2008). The degree of
risk aversion for households (ϵ) is taken to be 2, a standard value in the literature. The
discount factor (β) is set as 0.98, such that the interest rate of the model economy is 6%,
a reasonable estimate for the long-run interest rate in the US. The depreciation rate of
capital (δ) is chosen to be 0.07, consistent with the US National Income and Product Ac-
counts. The paper defines firms of high production ability as those at the top 10% of the
production ability distribution; firms of low production ability as the rest. This division
is to make the two types of firms respectively represent the large and small firms defined
earlier. Among all innovating firms between 1981 and 2000, around 9.1% are large firms
(firms with more than 1000 employees). 55.1% of large firms turned out to be of high pro-
duction ability, while only 5.5% of small and medium firms have high production ability.
Therefore, in the following analysis, firms of high and low production ability largely cor-
respond to large and small firms. The scale parameter in the R&D cost function (χ) is
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Table 2: Parameter Values from a Priori Information

Parameter Description Value Identification
η Capital Share 0.25 Guner et al. (2008)
λ Labor Share 0.60 Guner et al. (2008)
ϵ CRRA Parameter 2.00 Standard
β Discount Factor 0.98 Interest Rate
δ Depreciation Rate 0.07 NIPA
αH Share of High Type 0.10 Imposed
αL Share of Low Type 0.90 Imposed
χ R&D Cost, Scale 1.00 Normalization
σ R&D Tax Credit Rate 0.05 Akcigit et al. (2018)

Notes: This table shows the parameter values adopted from a priori information. The division of firm
types (αH , αL) to a large extent overlaps the division of firm size in Figure 2.

normalized to be 1, which is irrelevant to the quantitative results, as the calibrated step
size of innovation (γ) will adjust to any changes in χ. The R&D tax credit rate (σ) is set at
the effective level before 1980 as calculated by Akcigit, Ates and Impullitti (2018).

Parameters in the second category are pinned down by direct estimation from the
data, as presented in Table 3. The sample used for estimation is all the firms in the Lon-
gitudinal Business Database (LBD) that have ever been granted a patent recorded in the
Patent Data Project (PDP). Therefore, it is all the innovating firms. The sample spans
from 1981 to 2000. Estimation of firms’ production ability is based upon the solution of
employment decisions in the model, l(m, z′) = mz′[(αhmh + αlml)z′]−1. By taking the nat-
ural logarithm of both sides, it can be shown that the logarithm of a firm’s employment
equals the summation of the logarithm of its production ability, the logarithm of the in-
novation level, and aggregate factors. This study uses the accumulated citation-weighted
patent stock as a proxy for a firm’s innovation level and uses the time and industry fixed
effects as proxies for the aggregate factors. Then, the firm’s production ability is backed
out from the residual term of the regression,

ln(empijt) = β1 ln(patentstockijt)︸ ︷︷ ︸
ln(z′)

+β0 + ut + vj + residualijt︸ ︷︷ ︸
ln(m)

. (19)

The production ability of the high type (mH) and low type (mL) are respectively es-
timated by the average production ability of firms at the top 10% and bottom 90% of the
sample distribution. Once the production ability type is determined for each firm in each
year, the four elements in the transition matrix (Qmm′) are disciplined by the average frac-
tion of firms transitioning from high to high, high to low, low to high, and low to low
type between consecutive years.

The elasticity parameter (ν) in the matching function is estimated by running panel
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Table 3: Parameter Values from Direct Estimations

Parameter Description Value Identification
mH Prod. Ability of High Type 24.43 Regression
mL Prod. Ability of Low Type 0.70 Regression

Qmm′ Type Transition Matrix
[

0.872 0.128
0.017 0.983

]
MLE

ν Matching Function, Exponent 0.70 Regression
X(ω) Within-scope Probability e−4.443 ∗ |ω|0.7643 Regression

Notes: This table shows the parameter values from direct estimations. The transition matrix reported is
rounded to three decimal points to comply with the Census disclosure requirement.

regressions of the number of patent transactions on the number of potential sellers and
potential buyers in different layers of industries (i.e., different numbers of digits of the
NAICS code). Taking the natural logarithm of both sides of the matching function derives

ln(match numjt) = α0 + νln(seller numjt) + (1 − ν)ln(buyer numjt) + ut + vj + ejt,

where seller num is the number of firms whose patent has a technology class that does
not match any of the firm’s 6-digit NAICS industries. buyer sum is the number of firms
that do not have an in-scope patent.34 Whether the technology class of a patent matches
the firm’s industries is based on the concordance developed by Silverman (2002).35 The
results are shown in Table 15 in Appendix D.1. The value of ν is taken to be the average
of the estimates.

The within-scope probability function (X(ω)) is estimated as follows. Since it is op-
timal for firms to produce in industries close to its main line of business (center), this
paper assumes all firms do so and only estimates the relationship between a patent’s
within-scope probability and the number of industries of its inventor. The function form
is assumed to be X(|ω|) = ξ|ω|ψ. This paper groups firms with patents in the LBD by
the number of industries and regress the logarithm of the average fraction of patents that
match their firms’ production scope in each group on the logarithm of the industry num-
ber. ξ and ψ are estimated to be e−4.443 and 0.7643.36

The third group of parameters is disciplined by minimizing the sum of squares of
the distance between key moments in the data and the model-predicted values jointly
in the initial balanced growth path (1981-1985). The growth rate in GDP per capita, af-
ter removing the cyclical components through the HP filter, is primarily affected by the

34The potential buyers may also include non-innovating firms. Including them in the regression will not
change the results much.

35Silverman’s concordance links the International Patent Classification (IPC) system to the U.S. Standard
Industrial Classification (SIC) system. This study further links the SIC with the North American Industry
Classification System (NAICS).

36The full regression results are shown in Table 16 of Appendix D.2.
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Table 4: Parameter Values from the Minimum Distance Estimation

Parameter Description Value Identification
γ Step Size of Innovation 1.26 Growth Rate
1 + ρ R&D Cost Elasticity 1.56 R&D Cost/Sales
θ Bargaining Power 0.20 Ratio (H and L)
µ Management Cost, Scale 1.21E-4 Avg. Number of
1 + ι Management Cost, Elasticity 2.34 Industries (H and L)
ϕ Matching Function, Scale 0.04 Patent Traded Share

Notes: Parameters in this table are jointly calibrated to minimize the distance between the model and
data moments in the initial balanced growth path (1981-1985).

step size of growth driven by innovations (γ). The R&D cost-to-domestic sales ratio of
innovating firms with high and low production ability are informative of both the elas-
ticity of the R&D cost function (1 + ρ) and the bargaining power of sellers on the patent
transaction market (θ). The average industry numbers of innovating firms with high and
low production ability are directly determined by the scale (µ) and elasticity (1 + ι) pa-
rameters in the management cost function. They are also indirectly influenced by sellers’
bargaining power (θ). The citation-weighted share of patents traded within 10 years of
issuance is linked with the scale parameter (ϕ) in the matching function. The estimated
values of the relevant parameters are shown in Table 4. It is worth noting that both the
R&D cost and management cost functions are convex, as assumed by the model, although
no restrictions are imposed in the estimation process. The model predicted moments are
almost the same as in the data, as shown by Table 5, attesting that the model fits the initial
balanced growth path well.

Table 5: Model Fit for Key Moments in the Initial Balanced Growth Path

Targets Data Model
Economic Growth Rate (1981-1985) 2.13% 2.13%
R&D Cost/Sales of H Firms (1981-1985) 3.62% 3.62%
R&D Cost/Sales of L Firms (1981-1985) 2.83% 2.83%
Avg. Number of Industries of H Firms (1981-1985) 11.81 11.81
Avg. Number of Industries of L Firms (1981-1985) 1.92 1.92
The Share of Patents Traded (1983) 23.2% 23.2%

Notes: This table displays the targeted moments in the initial balanced growth path. The model and
data moments are almost the same, showing the model fits the data well.

6.2 Recalibration to the Ending Balanced Growth Path

As pointed out in Section 5.5, the set of parameters, {ϕ, θ, σ, µ, ι, γ, ρ}, corresponds to
the possible explanations for the specialization patterns. To match the ending balanced
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Table 6: Model Fit for Key Moments in the Ending Balanced Growth Path

Targets Data Model
Economic Growth Rate (1996-2000) 2.22% 2.22%
R&D Cost/Sales of H Firms (1996-2000) 3.15% 3.15%
R&D Cost/Sales of L Firms (1996-2000) 6.71% 6.71%
Avg. Number of Industries of H Firms (1996-2000) 6.31 6.31
Avg. Number of Industries of L Firms (1996-2000) 1.61 1.61
The Share of Patents Traded (2000) 37.0% 37.0%

Notes: This table displays the targeted moments in the ending balanced growth path. The model and
data moments are almost the same, showing the model fits the data well.

Table 7: Model Fit for Untargeted Moments

Moments Data Model
Within-scope Prob. of H Firms (1981-1985) 6.65% 7.76%
Within-scope Prob. of L Firms (1981-1985) 2.92% 1.94%
Within-scope Prob. of H Firms (1996-2000) 3.79% 4.81%
Within-scope Prob. of L Firms (1996-2000) 2.25% 1.69%

Notes: This table displays the untargeted moments. The model successfully captures the trend and
magnitude of the within-scope probability of innovations for the two types of firms in the two periods.

growth path, this paper sets the new R&D tax credit rate as the actual effective rate, 24%,
in the 1990s. Other parameters in this set are recalibrated to make the model fit the eco-
nomic growth rate, the R&D cost-to-domestic sales ratio, the average industry numbers
of innovating firms with high and low production ability, and the fraction of patents ever
transacted in 1996-2000. The value of parameters out of this set is fixed in the recalibra-
tion process. The performance is displayed in Table 6, showing a good match between
the model and data.

6.3 Untargeted Moments

To further check the quality of the calibration, this paper compares the model-predicted
values with the real values of some untargeted moments. The within-scope probabilities
for the two types of firms in the model (X(ωH) and X(ωL)) are compared with the average
matching rates between the firms’ industry classes and their patents’ technology classes.
As shown in Table 7, they are very close in both periods. This suggests that parameters es-
timated from changes in production scope and innovation intensity successfully capture
the declining matching rate between innovation and production.
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Table 8: Changes of Parameter Values

Old BGP New BGP Interpretation
ϕ 0.04 0.07 Matching efficiency increase
θ 0.20 0.29 Sellers’ bargaining power increase
µ 1.21E-4 1.26E-4 Higher costs of large scope
1 + ι 2.34 3.04 More DRS to scope
γ 1.26 1.27

Fall in R&D efficiency
1 + ρ 1.56 1.31

Notes: This table compares the calibrated values of key parameters in the two balanced growth paths.
The last column interprets the parameter value change between the two BGPs.

6.4 Changes in Key Parameter Values

Comparison between the initial and ending values of the parameters are displayed in
Table 8. Although the direction of changes of these parameters is not restricted in the
recalibration process, it turns out to be consistent with the original predictions. There is
an increase in the matching efficiency, ϕ, of the patent market and the bargaining power, θ,
of patent sellers, confirming decreasing market frictions and stronger protection towards
patent holders. The scale and elasticity parameters in the management cost function (µ
and ι) are larger, implying that the cost of producing in multiple industries is higher. The
very slight change in γ and the decrease in ρ suggests that success of R&D depends more
heavily on innovation investment, indicating a fall in R&D efficiency.37 In both balanced
growth paths, firms with both high and low production ability optimally choose to keep
their within-scope innovation output.

6.5 Decomposition

To gauge the contribution of each possible explanation, this paper sets the parameters
that govern each explanation at the ending balanced-growth-path value while others at
the initial steady-state value. Hypothetical moments about specialization and economic
growth are derived in each case. Then the paper compares the hypothetical moments with
the moments in the initial balanced growth path. The difference between them measures
the effect of each mechanism. The decomposition process uses the formula,

Mi(Θ81−85, κ96−00)− Mi(Θ81−85, κ81−85)

Di,96−00 − Di,81−85
, (20)

where Mi is the ith moment in the model and Di is the corresponding value in the data.
κ is the set of key parameters that correspond to each explanation. Θ represents all pa-

37The elasticity of the R&D success rate with respect to innovation investment can be expressed as 1
1+ρ .
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rameters in the model except for κ. This formula isolates the contributions of the key
parameters.38

Table 9 presents the decomposition results. The first row displays the direction of
changes in the data regarding the average production scope, the R&D intensity of firms
with high and low production ability, the share of patents traded, and the economic
growth rate. Starting from the second row, positive numbers mean the predicted change
is consistent with the direction of the actual change; negative numbers mean otherwise.
Numbers in the columns regarding scope, R&D intensity and patent trade captures the
share of actual change explained by each channel. The column regarding growth captures
the percentage point of the annual growth each channel is corresponding to. The direction
of changes predicted jointly by higher matching efficiency and better patent protection,
is consistent with the direction of all the real changes. Quantitatively, the new hypothesis
can jointly explain 20% of the decrease in production scope of innovating firms; 229%
of the decrease in R&D intensity for firms with high production ability and 108% of the
increase in R&D intensity for firms with low production ability. It is responsible for the
bulk of (90%) the rise in the trading share of patents and leads to a 0.64 percentage points
increase in growth. This study lists the respective contribution of the matching efficiency
and sellers’ bargaining power, finding that the former is the main driving force. The R&D
tax credit has little explanatory power for the specialization patterns but contributes to a
higher growth rate. A significant portion of both specialization patterns can be attributed
to changes in the production cost structure. However, these changes have minimal im-
pact on patent trading activities and negatively contribute to economic growth. Increased
difficulty in finding good ideas contributes to a large part of the decrease in firms’ scope
but is muted in explaining other dimensions of specialization. The subsections below will
discuss the effects of each mechanism in detail.

6.5.1 Increased Tradability of Innovations

The effect of this mechanism on the specialization patterns is mostly driven by the rise
in the matching efficiency of the patent trading market. Both the buyers and sellers get
higher matching rates on the market. Higher chances of trading decrease R&D incentives
for potential buyers while increase R&D incentives for potential sellers. Since firms with
high production ability benefit more from buying patents on the market, they decrease
R&D intensity. Firms with low production ability benefit more from selling patents to
other firms. Therefore, they have more incentives to do R&D. The increasing matching

38Another decomposition method sets the parameters that govern each explanation at the initial
balanced-growth-path value while others at the ending steady-state value. The hypothetical moments
constructed in this way are compared with the data moments in the initial balanced growth path. The
decomposition results are similar and are available upon request.
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Table 9: Effects of Key Parameters

Prod. Scope R&D(H) R&D(L) Patent Trade Growth
Data - - + + +
Patent Market (ϕ, θ) 20% 229% 108% 90% 0.64pp
Efficiency (ϕ) 20% 223% 51% 99% 0.42pp
Bargaining Power (θ) -10% 3% 44% -5% 0.14pp
Tax Credit (σ) 11% -80% -13% -7% 0.35pp
Production Cost (µ, ι) 59% 326% 44% 4% -0.36pp
Rare Good Ideas (γ, ρ) 81% -359% -57% 7% -0.03pp

Notes: The first row shows the actual direction of changes in the data. In the second to seventh rows,
positive values indicate that the direction of changes due to the corresponding parameters is consistent
with the actual direction. Columns 2-5 report the share of change explained by each channel, while
Column 6 reports the percentage-point growth rate explained by each channel.

efficiency in patent trade makes the production scope less critical in determining the value
of a firm’s innovation output. So, there is a tendency to narrow the scope. The fraction of
patents traded is directly linked to the matching efficiency, and therefore, is explained to
a large extent.

The contribution of higher bargaining power mainly lies in the increase in the R&D
intensity of firms with low production ability. This is because higher bargaining power
increases the average transaction prices of patents. This increases the R&D incentives for
firms with low-production ability, since they benefit more from selling patents.

Higher economic growth stems from two key factors. First, fewer ideas are wasted,
as out-of-scope innovations can be leveraged through trade. Second, innovation activities
are reallocated to firms with a comparative advantage, which arises from their identical
innovation capabilities but relatively lower production ability.

6.5.2 R&D Tax Subsidy

An increase in the R&D tax credit enhances R&D intensity among firms with high pro-
duction ability, albeit at the expense of a slight reduction in R&D intensity among firms
with low production ability. High-production-ability firms benefit more because they can
more effectively monetize innovation through their own production. The reduced R&D
intensity among lower-production-ability firms arises from general equilibrium effects.
Overall, higher R&D intensity significantly boosts economic growth.

6.5.3 Changes in the Production Cost Structure

Changes in the production cost structure contribute positively to both specialization pat-
terns. A higher cost of producing in multiple industries directly shrinks firms’ produc-
tion scope. Smaller production scope reduces the likelihood of matches between innova-
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tion and production, thus disincentivizing firms to do R&D. This explains the decline in
high-type firms’ R&D intensity. The slight increase in low-type firms’ R&D intensity is
mainly due to the general-equilibrium effect. This mechanism alone has minimal effects
on patent trading activities. It negatively affects growth as mismatches between innova-
tion and production increase, and more inventions are wasted.

6.5.4 Good Ideas are Harder to Find

As innovation becomes more investment intensive, there is a direct decrease in the incen-
tive to do R&D. Then, successful R&D output becomes scarcer and more valuable. So,
firms with higher production ability (the ones that benefit more from R&D output) invest
more in innovation. This predicts a shift of R&D activities to firms good at production,
contradictory to the trend in the 1980s and 1990s. The decrease in firms’ production scope
is mostly driven by a significant decrease in the scope of firms with low production ability.
This is because those firms sharply reduce their R&D effort and get lower benefits from
expanding production scope. The change in the R&D cost function contributes negatively
to growth as idea generation is more costly than before.

7 Discussion and Extension

Quantification of the baseline model shows that increased tradability of innovations can
explain a sizable share of the decrease in production scope and the reallocation of R&D
activities. However, this new hypothesis may be subject to several challenges. First, the
direction of causality is not clear. It is possible that the more vibrant patent trading ac-
tivities are the result of narrower production scope of firms, i.e., firms produce in fewer
industries due to changes in the cost structure and then have to depend on the market for
monetizing innovation as it becomes harder to match innovation output with their own
production. Second, the potential mismatch between innovation output and production
may not play an important role. Intellectual products may be similar to other goods in
the sense that the inventing process requires ingredients from other intellectual proper-
ties. Alleviation of the incomplete contract problem in the ingredient trading process may
also lead to more patent transactions and shrinkage in production scope.

To check whether the new hypothesis holds in front of these challenges, this paper
looks at changes in the targeting behaviors of firms’ R&D activities. If the reverse causal-
ity is true, it should be predicted that R&D becomes more targeted as the firm spans
fewer industries. If there is no mismatch between innovation and production, but only
the incomplete contract problem in the ingredient trading process for new inventions, the
targeting behaviors of innovation will increase with patent trade since firms no longer
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need to invent every ingredient. On the contrary, the new hypothesis in this study pre-
dicts the R&D activities to be less targeted, as the type of R&D that is less likely to match
the firm’s own production benefits more from the trade of intellectual properties.

7.1 Data Patterns

The targeting behavior of the innovation process can be measured by the expense shares
of different R&D types—basic research, applied research, and development. They differ
in the probability of being applied to a specific production process.39 This study uses the
ratio of basic research to basic plus applied research expenses (the red curve) and the ratio
of basic research to total R&D expenses (the blue curve) as proxies for firms’ targeting
behaviors in R&D. A higher share implies less targeting and broader R&D scope. Figure
5 shows the two ratios over the years.40 They both picked up at the beginning of the 1980s,
and the rising trends continued in the following two decades—the same period when the
patent market grew. The pattern of widening R&D scope in the 1980s and 1990s is also
supported by Akcigit and Ates (2019), in which the authors use the average length of
patent claims as a measurement of the R&D scope. This pattern suggests that the reverse
causality and the ingredient trading theory are insufficient to address the newly found
specialization wave.

7.2 Model Extension

The baseline model is extended to study the impact of the new hypothesis on firms’ tar-
geting behaviors in the innovation process. Now, firms choose the success rates (equiv-
alent to expense) of two types of research at the innovation stage—(a)pplied and (b)asic
research. The two types of research differ in three dimensions: (i) the scale and elasticity
parameters in the R&D cost function. (i.e., χb ̸= χa, ρb ̸= ρa), (ii) the probability of the
innovation output falling inside the firm’s own production scope (i.e., Xb(.) ̸= Xa(.)), and
(iii) the step size of successful inventions coming from basic research and from applied
research (i.e., γb ̸= γa). Each firm is endowed with two units of search effort—one for
basic research output and the other for applied research output. The innovation level of

39In the Survey of Industrial Research and Development (SIRD), basic research is defined as ”the activity
aimed at acquiring new knowledge or understanding without specific immediate commercial application
or use;” applied research is ”the activity aimed at solving a specific problem or meeting a specific commer-
cial objective;” development is ”the systematic use of research and practical experience to produce new or
significantly improved goods, services, or processes.” Therefore, basic research has the broadest targets.

40Only data before 1998 is shown because statistics for 1998 and later years are not directly comparable
to statistics for 1997 and earlier years, according to the statement made by the SIRD.
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Figure 5: Share of Research Spending on Basic Research
Notes: This figure shows two measures of the basic research spending share. The red curve is the ratio of
basic research expenses to total research expenses; the blue curve is the ratio of basic research expenses
to total research and development expenses.

a firm is updated in each period according to the following law of motion,

z′ = z + ∑
j∈{a,b}

γj(1
j
(RD∈ω)

1
j
k(m, z; z) + Bj)z, (21)

where 1
j
(RD∈ω)

is an indicator of whether the firm’s type-j (applied or basic) research

output falls inside its production scope. 1
j
k(m, z; z) is an indicator that equals to 1 if the

firm keeps its within-scope type-j innovation output. Bj is an indicator of whether the
firm can buy a type-j (applied or basic) patent that matches its scope.

The new timeline is shown as follows.

m, z

Choose ω R&D with ia, ib

1a
(RD∈ω), 1b

(RD∈ω)

Search & trade ideas

z′ realizes

Production

The following proposition holds. Characterization and proof of Proposition 7.1 are
presented in Appendix C.2 and C.3.

Proposition 7.1 (Symmetric Balanced Growth Path). There exists a symmetric balanced growth
path in the extended model.
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Table 10: Effects of Key Parameters

Basic Prod. R&D R&D Patent Growth
Research Scope (H) (L) Trade

Data + - - + + +
Patent Market (ϕ, θ) 105% 24% 194% 96% 90% 0.61pp
Efficiency (ϕ) 67% 23% 190% 40% 97% 0.40pp
Bargaining Power (θ) 47% -8% 0% 43% -4% 0.14pp
Tax Credit (σ) 23% 10% -72% -11% -5% 0.33pp
Production Cost (µ, ι) 16% 62% 262% 33% 3% -0.32pp
Harder Ideas ({γj, ρj}j∈{a,b}) −54% 59% -297% -44% 8% -0.39pp

Notes: The first row shows the actual direction of changes in the data. In the second to seventh rows,
positive values indicate that the direction of changes due to the corresponding parameters is consistent
with the actual direction.

7.3 Quantification of the Extended Model

Table 10 presents the explanatory power of the four mechanisms in the targeting behav-
iors of innovation and the other moments shown in the baseline calibration.41 As shown
by the first column, increased tradability of innovations is responsible for all (105%) of
the increase in the share of basic research. The increase in R&D tax credit and changes
in production cost structure also contribute to a small part of the increase. The increased
difficulty of finding good ideas leads to a contraction in R&D scope. The impacts of the
mechanisms on other moments are very similar to the results in the baseline model, con-
firming the robustness of the previous conclusions.

In sum, the rise in the share of basic research spending provides evidence of the
important role of potential mismatches between innovation and production in explaining
the observed specialization wave.

8 Empirical Analysis

This section empirically tests whether there is causality from the pro-patent reform to the
specialization patterns. The main idea is to exploit the regional and sector differences in
the exposure to policy changes and check whether they lead to different extents of the
drop in scope and reallocation of innovation and production.

8.1 Institutional Background

The US federal court system has three main layers: district courts, circuit courts, and the
Supreme Court of the United States. All patent-related cases are heard initially at one of

41The calibration process of the extended model is shown in Appendix D.4.
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Table 11: Patent Invalidation Rates in District Courts under Different Circuit Courts

Circuit Court Invalidation rate Circuit Court Invalidation rate
Before After Before After

Boston 0.64 0.18 Chicago 0.54 0.30
New York 0.58 0.28 St.Louis 0.49 0.33
Philadelphia 0.74 0.32 San Francisco 0.51 0.29
Richmond 0.47 0.26 Denver 0.27 0.22
New Orleans 0.36 0.20 Atlanta 0.41 0.28
Cincinnati 0.60 0.30 DC 0.59 −

Notes: A higher invalidate rate before the establishment of CAFC means a more negative attitude to-
wards patent holders. The circuit court of DC has too few observations after the CAFC era, so the
invalidation rate is omitted.

the ninety-four district courts across the country. If there are challenges to the decisions,
the case can be appealed to one of the circuit courts. Since the Supreme Court rarely hears
patent-related cases, the circuit courts usually have the final say on those cases.

Before 1982, twelve circuit courts divided the country into different regions. Atti-
tudes towards patents in the circuit courts had a significant discrepancy. Therefore, de-
cisions of district courts under different circuit courts varied much in the first place. The
second and fifth columns of Table 11 shows the fraction of lawsuits invalidating the in-
volved patents in district courts of different regions from 1940 to September 1982. The
legal environment towards patents was stable in this period.

In October 1982, Congress created the Court of Appeals for the Federal Circuit (CAFC).
It has nationwide jurisdiction to hear appeals involving patent laws. So, decisions of dis-
trict courts can be appealed to not only the twelve regional circuit courts but also the
CAFC. The CAFC was more positive towards patents and had a much lower invalidation
rate in its final decisions. Therefore, the decisions of district courts became lower and
more uniform across different regions in the first place, as shown in the third and sixth
columns of Table 11. Regions that had a higher patent invalidation rate before 1982 were
more strongly affected by the CAFC.42

Precedents of court decisions in patent-related legal disputes often determine the
patentability of similar objects afterward. Genetic engineering and software are two of
the most controversial fields of patentability in the 1970s. In 1980, the Supreme Court
ruled in the case between Diamond and Chakrabarty that genetically engineered bacteria
involved in the case could be patented. This ruling was viewed as a turning point for the
biotechnology industry in the following decades. In 1981, the decision of the Supreme
Court in the dispute between Diamond and Diehr that software was not precluded from
patentability also had a profound impact on court decisions afterward. These two land-

42Although there are forum shopping behaviors, firms are more likely to bring their lawsuits to the dis-
trict court where they are located due to home-field advantage (Moore (2001)).
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mark cases happened just before the establishment of the CAFC, making these two used-
to-be controversial fields experience the most reduction of inconsistency among different
regions. This leads to another dimension of difference in firms’ exposure to policy shocks.

8.2 Estimation Strategy

The following Difference-in-Difference (DiD) regression explores whether regional differ-
ences in the change of patent protection led to different extents of contraction in firms’
production scope,

ln(indist) =αi + β ∗ invalc,pre ∗ postt + γXist + µt + ϵist, (22)

where the dependent variable, indist, is the number of 6-digit NAICS industries of the firm
i in the LBD. s is the state of its headquarters before the year of the CAFC establishment.
The headquarter is measured by the state where the firm has the most employment. t
is the year of the observation. The main explanatory variable is an interaction between
invalc,pre, the patent invalidation rate of the circuit court, c, that the state, s, belongs to
prior to the CAFC era, and a dummy variable, postt, that indicates whether the year is
before or after the establishment of the CAFC. The control variables, Xist, include the log
of firm’s employment, the effective federal and state corporate income tax rates, and R&D
tax credit rates calculated by Wilson (2009), and the log of state-level real GDP. Firm-fixed
effects, αi, and year-fixed effects, µt, are also included in the regression to exclude perma-
nent cross-firm and time differences. The coefficient, β, captures the relationship between
the different changes in firms’ production scope and the different changes in patent pro-
tection strength across regions. A negative β implies firms in regions that experienced
a larger increase in patent protection (i.e., a larger decrease in the invalidation rate) de-
creased production scope more.

Sectoral differences add another dimension of difference in the exposure to patent
protection. The following Triple-Difference (DDD) regression tests whether firms with a
higher exposure decreased production scope more,

ln(indist) =αi + β1 ∗ high treati ∗ invalc,pre ∗ postt + β2 ∗ invalc,pre ∗ postt+

β3 ∗ high treati ∗ postt + γXist + µt + ϵist,
(23)

where high treati is the firm’s share of employment in the NAICS code 541710 (Research
and Development in the Physical, Engineering, and Life Sciences)43 and 511210 (Software
Publishers) prior to the CAFC. The rest of the variables are the same as defined earlier.

43Bioengeering is embodied in this code.
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The other interaction terms are omitted in the fixed effects. β1 captures the differential im-
pact of the change in patent protection for firms in the two most controversial industries
versus others; β2 shows whether the effect of the CAFC concentrates in the two industries
or stretches to more general industries.

To check whether regional differences in the change of patent protection resulted
in diverging trends of R&D activities by small and large firms, this paper designs the
following regression,

RD to salesist =αi + β1 ∗ smalli ∗ invalc,pre ∗ postt + β2 ∗ invalc,pre ∗ postt+

β3 ∗ smalli ∗ postt + γXist + µt + ϵist,
(24)

where RD to salesist is the the firm’s R&D expenses to domestic sales ratio, measuring
R&D intensity. smalli is a dummy variable indicating whether the firm had less than 1000
employees prior to the CAFC. The rest of the variables are the same as defined earlier.
β2 captures the impact of the change in patent protection on large firms’ R&D intensity;
β1 + β2 captures the impact on small firms. A negative β2 implies that large firms in
regions experiencing a larger increase in patent protection (i.e., a greater decrease in the
invalidation rate) decreased the R&D-to-sales ratio more. Conversely, a positive β1 + β2

implies that small firms in regions with a larger increase in patent protection increased
the R&D-to-sales ratio more.

The standard errors are clustered at the circuit court region by the post dummy level
in all specifications.

8.3 Sample Description

The sample of the regression analysis for production scope is the innovating firms in the
LBD that existed before or in 1982, the year of the establishment of the CAFC. The sample
of the regression analysis for R&D intensity is all the firms in the SIRD that existed before
or in 1982. The requirement of existence before the reform is to avoid endogeneity issues
induced by changes in firms’ headquarters due to the policy change. To be representa-
tive for all the innovating firms, the R&D intensity regression is weighted by the sample
weight assigned to each observation in the SIRD. The sample period for all regressions
is from 1976 to 1989, 7 years before and after the reform.44 Summary statistics of the
main variables are presented in Table 20 in Appendix E.1. The number of observations
and the common control variables in the two samples (weighted for the SIRD sample) are
comparable in magnitude.

441976 is the earliest year of the LBD, so the longest period this study can explore before the establishment
of the CAFC is seven years. This study also runs the same regressions on the samples of six years and five
years before and after the reform. The results are very similar.
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Table 12: DiD Regression Results on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

Invalidation Rate*Post -0.0326** -0.0326** -0.0332** -0.0281**
(0.014) (0.014) (0.014) (0.013)

Ln(Employment) 0.0888*** 0.0899*** 0.0893*** 0.0894***
(0.007) (0.007) (0.007) (0.007)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 268000 268000 268000 268000
R-squared 0.944 0.944 0.944 0.944

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.

8.4 Regression Results

Table 12 displays the regression results of Equation (22) that exploits regional differ-
ences on production scope. The first two columns insert the post dummy in the regres-
sion instead of the year-fixed effects; the last two columns control the year-fixed effects.
Columns (2) and (4) control the state-level characteristics while columns (1) and (3) do
not. In all of the columns, there are negative and significant coefficients of the interac-
tion term, implying that firms located in regions with a larger change in patent protection
strength experience a larger drop in production scope.

Table 13 displays estimation of Equation (23) that includes sectoral differences. The
different controls across columns are the same as in Table 12. The negative and signif-
icant coefficient of the triple interaction term suggests that firms in the highly treated
industries (bioengineering and software) are more affected by the CAFC. The coefficient
of Invalidation Rate ∗ Post is still significantly negative, showing that the impact of the
CAFC is not limited to the two highly treated industries.

The average magnitude of the interaction term coefficient (−0.032) in Table 12 sug-
gests that the decrease in the patent invalidation rates (55% − 28%) resulted in 0.86%
decrease in firms’ production scope. The average sum of the triple and double interaction
term coefficients in Table 13 (−0.16) suggests that for firms fully exposed to the bioengi-
neering and software industries, the decrease in the patent invalidation rates (55%− 28%)
resulted in 4.32% decrease in firms’ production scope. Since the overall decrease of firms’
production scope is 11.8% in the period of the regression sample, the invalidation rate
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Table 13: DDD Regression Results on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

High treat*Invalidation Rate*Post -0.134* -0.132* -0.132* -0.128*
(0.069) (0.069) (0.069) (0.069)

Invalidation Rate*Post -0.0301** -0.0301** -0.0307** -0.0257*
(0.014) (0.014) (0.014) (0.013)

High treat*Post 0.0840** 0.0833* 0.0833** 0.0829*
(0.040) (0.041) (0.040) (0.040)

Ln(Employment) 0.0888*** 0.0899*** 0.0893*** 0.0894***
(0.007) (0.007) (0.007) (0.007)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 268000 268000 268000 268000
R-squared 0.944 0.944 0.944 0.944

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.

decrease alone can explain 7.3% of the scope shrinkage for general firms and 36.7% for
firms in the bioengineering and software industries.

Table 14 displays estimation of Equation (24) that explores effect of the policy change
on the R&D intensity of small and large firms. The different controls across columns are
the same as in Table 12. The positive and significant coefficient of the triple interaction
term suggests that small firms increases R&D intensity relative to large firms due to the es-
tablishment of the CAFC. The coefficient of Invalidation Rate ∗ Post is negative, although
not significant, showing that the CAFC decreases the R&D intensity of large firms.

The average magnitude of the coefficient of InvalidationRate ∗ Post (−0.036) in Ta-
ble 14 suggests that the decrease in the patent invalidation rates (55% − 28%) resulted
in 0.97 percentage points decrease in large firms’ R&D intensity. The average sum of
the Small ∗ InvalidationRate ∗ Post and InvalidationRate ∗ Post coefficients in Table 14
(0.21) suggests that the decrease in the patent invalidation rates resulted in 5.67 percent-
age points increase in small firms’ R&D intensity. These numbers are comparable to the
overall changes in the large and small firms’ R&D intensity.

Placebo tests show there are no pre-trends for the observed regional and sectoral
differences. Appendix E.2 describes details about the tests.
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Table 14: DDD Regression Results on R&D Intensity

Dependent Variable R&D Expenses to Domestic Sales Ratio
(1) (2) (3) (4)

Small*Invalidation Rate*Post 0.266*** 0.223** 0.267*** 0.223**
(0.091) (0.105) (0.093) (0.105)

Invalidation Rate*Post -0.0456 -0.0215 -0.0544 -0.0215
(0.036) (0.055) (0.035) (0.055)

Small*Post -0.177*** -0.111* -0.136** -0.111*
(0.057) (0.066) (0.058) (0.066)

Ln(Employment) -0.0049 -0.00189 -0.00121 -0.00189
(0.024) (0.022) (0.022) (0.022)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations (Weighted) 220000 220000 220000 220000
R-squared 0.719 0.72 0.72 0.72

Notes: The dependent variable is the firm’s R&D-expenses-to-domestic-sales ratio. The four columns
have different control variables. Standard errors are clustered by circuit court regions × the post
dummy. The number of observations is rounded to the nearest 1000 to comply with the disclosure
requirement of the Census Bureau.

9 Conclusion

This study finds novel patterns of firm specialization in the 1980s and 1990s in the US Cen-
sus data. (i) Firms, especially innovating ones, narrowed down their production scope.
(ii) Innovation activities shifted from large to small firms.

A new hypothesis is proposed to explain the observed phenomena—higher patent
trading efficiency and better patent protection increased the tradability of intellectual
properties, making production scope less critical in determining the value of a firm’s inno-
vations. Three major conclusions can be drawn in this paper. First, increased tradability
of innovations accounts for 20% of the production scope decrease and 108% of the real-
location of innovation activities. Second, increased tradability of innovations leads to a
0.64 percent point increase in growth rates. Third, there is evidence of causality from the
pro-patent reforms to the two specialization patterns.

This paper also finds in the data that the R&D activities of US firms became less
targeted in the 1980s and 1990s. Quantitative results of the extended model show that
increased tradability of innovations can explain 105% of the decrease in R&D targeting.

Using the regional and sectoral differences in the exposure to patent policy changes
in the early 1980s, this paper provides empirical support for causality from the pro-patent
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reform to contraction in firms’ production scope and the shift of innovation activities.
The findings of this paper suggest that innovation and production become more sep-

arate when patent trade is more prevalent. A potential extension is to allow firms to
endogenously choose their production ability at some costs. Mirroring the result that
firms with high production ability choose to do less innovation, it is predicted that firms
with high innovation levels will spend fewer resources improving their production abil-
ity. This may provide a new explanation for the phenomenon found in Pugsley, Sedlacek
and Sterk (2019) that high-growth startups (”gazelles”) have grown less rapidly in size
since the mid-1980s. Another extension is to allow the product market to face monopoly
power and firms to have entry-and-exit decisions. This helps to capture the distinct fea-
tures between M&A and patent sales and the strategic behaviors of large firms as in Cun-
ningham, Ederer and Ma (2021).

An important policy implication of this paper is that stronger intellectual property
rights protection has an impact that is often neglected—reducing mismatches between
innovation and production through a market approach. It spurs specialization and pro-
vides a strong engine for economic growth. Specialization resulting from patent trade
should be considered when optimizing the IPR protection policies.
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Atalay, Enghin, Ali Hortaçsu, and Chad Syverson. 2014. “Vertical integration and input
flows.” American Economic Review, 104(4): 1120–48.

Atkeson, Andrew, and Ariel Burstein. 2019. “Aggregate implications of innovation pol-
icy.” Journal of Political Economy, 127(6): 2625–2683.

Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John
Van Reenen. 2020. “The fall of the labor share and the rise of superstar firms.” The
Quarterly Journal of Economics, 135(2): 645–709.

Baslandze, Salome. 2016. “The role of the IT revolution in knowledge diffusion, innova-
tion and reallocation.” Society for Economic Dynamics.

Baumol, William J. 2002. “Entrepreneurship, innovation and growth: The David-Goliath
symbiosis.” Journal of Entrepreneurial Finance, JEF, 7(2): 1–10.

Bloom, Nicholas, Charles I Jones, John Van Reenen, and Michael Webb. 2020. “Are
ideas getting harder to find?” American Economic Review, 110(4): 1104–44.

Boehm, Johannes, and Ezra Oberfield. 2020. “Misallocation in the Market for Inputs:
Enforcement and the Organization of Production.” The Quarterly Journal of Economics,
135(4): 2007–2058.

Bostanci, Gorkem. 2021. “Productivity Gains from Labor Outsourcing: The Role of Trade
Secrets.”

Chiu, Jonathan, Cesaire Meh, and Randall Wright. 2017. “Innovation and Growth with
Financial, and other, Frictions.” International Economic Review, 58(1): 95–125.

Coase, Ronald Harry. 1937. “The nature of the firm.” Economica, 4(16): 386–405.

Costinot, Arnaud, Lindsay Oldenski, and James Rauch. 2011. “Adaptation and the
boundary of multinational firms.” The Review of Economics and Statistics, 93(1): 298–308.

Cunningham, Colleen, Florian Ederer, and Song Ma. 2021. “Killer acquisitions.” Journal
of Political Economy, 129(3): 649–702.

De Ridder, Maarten. 2019. “Market power and innovation in the intangible economy.”

DeSalvo, Bethany, Frank Limehouse, and Shawn D Klimek. 2016. “Documenting the
business register and related economic business data.” US Census Bureau Center for Eco-
nomic Studies Paper No. CES-WP-16-17.

43



Eaton, Jonathan, and Samuel Kortum. 1996. “Trade in ideas Patenting and productivity
in the OECD.” Journal of International Economics, 40(3-4): 251–278.

Fort, Teresa C, Shawn D Klimek, et al. 2016. “The effects of industry classification
changes on US employment composition.” Tuck School at Dartmouth.

Gallini, Nancy T. 2002. “The economics of patents: Lessons from recent US patent re-
form.” Journal of Economic Perspectives, 16(2): 131–154.

Gans, Joshua S, David H Hsu, and Scott Stern. 2008. “The impact of uncertain intel-
lectual property rights on the market for ideas: Evidence from patent grant delays.”
Management Science, 54(5): 982–997.

Garcia-Macia, Daniel, Chang-Tai Hsieh, and Peter J Klenow. 2019. “How destructive is
innovation?” Econometrica, 87(5): 1507–1541.

Greenwood, Jeremy, Pengfei Han, and Juan M Sanchez. 2022. “Financing ventures.”
International Economic Review, 63(3): 1021–1053.

Grossman, Gene M, and Elhanan Helpman. 2002. “Integration versus outsourcing in
industry equilibrium.” The Quarterly Journal of Economics, 117(1): 85–120.

Grossman, Sanford J, and Oliver D Hart. 1986. “The costs and benefits of ownership: A
theory of vertical and lateral integration.” Journal of Political Economy, 94(4): 691–719.

Guner, Nezih, Gustavo Ventura, and Yi Xu. 2008. “Macroeconomic implications of size-
dependent policies.” Review of Economic Dynamics, 11(4): 721–744.

Hall, Bronwyn H, and Dietmar Harhoff. 2012. “Recent research on the economics of
patents.” Annu. Rev. Econ., 4(1): 541–565.

Han, Pengfei. 2018. “Intellectual Property Rights and the Theory of the Innovating Firm.”
Working Paper.

Han, Pengfei, Chunrui Liu, and Xuan Tian. 2020. “Does Trading Spur Specialization?
Evidence from Patenting.” Evidence from Patenting (October 2020).

Henry, Matthew D, and John L Turner. 2006. “The court of appeals for the federal circuit’s
impact on patent litigation.” The Journal of Legal Studies, 35(1): 85–117.

Hoberg, Gerard, and Gordon M Phillips. 2022. “Scope, scale and concentration: The 21st
century firm.” National Bureau of Economic Research.

Holmstrom, Bengt, and John Roberts. 1998. “The boundaries of the firm revisited.” Jour-
nal of Economic Perspectives, 12(4): 73–94.

Hsieh, Chang-Tai, and Esteban Rossi-Hansberg. 2019. “The industrial revolution in ser-
vices.” National Bureau of Economic Research.

44



Jarmin, Ron S, and Javier Miranda. 2002. “The Longitudinal Business Database.” SSRN
2128793.

Lamoreaux, Naomi R, and Kenneth L Sokoloff. 2001. “Market trade in patents and the
rise of a class of specialized inventors in the 19th century United States.” American Eco-
nomic Review, 91(2): 39–44.

Marco, Alan C, Amanda Myers, Stuart JH Graham, Paul D’Agostino, and Kirsten Ap-
ple. 2015. “The USPTO patent assignment dataset: Descriptions and analysis.”

Meador, Daniel J. 1992. “The origin of the Federal Circuit: a personal account.” American
University Law Review, Spring(41): 581–620.

Moore, Kimberly A. 2001. “Forum shopping in patent cases: does geographic choice
affect innovation.” J. Pat. & Trademark Off. Soc’y, 83: 558.

Moser, Petra. 2013. “Patents and innovation: evidence from economic history.” Journal of
Economic Perspectives, 27(1): 23–44.

Mukoyama, Toshihiko. 2003. “Innovation, imitation, and growth with cumulative tech-
nology.” Journal of Monetary Economics, 50(2): 361–380.

Olmstead-Rumsey, Jane. 2019. “Market Concentration and the Productivity Slowdown.”

Perla, Jesse, Christopher Tonetti, and Michael E Waugh. 2021. “Equilibrium technology
diffusion, trade, and growth.” American Economic Review, 111(1): 73–128.

Pugsley, Benjamin W, Petr Sedlacek, and Vincent Sterk. 2019. “The nature of firm
growth.” Available at SSRN 3086640.

Serrano, Carlos J. 2010. “The dynamics of the transfer and renewal of patents.” The RAND
Journal of Economics, 41(4): 686–708.

Silverman, Brian S. 2002. “Technological resources and the logic of corporate diversifica-
tion.” Routledge, volume 13.

Teece, David J. 1986. “Profiting from technological innovation: Implications for integra-
tion, collaboration, licensing and public policy.” Research policy, 15(6): 285–305.

White, Lawrence J. 2002. “Trends in aggregate concentration in the United States.” Journal
of Economic perspectives, 16(4): 137–160.

Williamson, Oliver E. 1985. “The economic institutions of capitalism.” New York: Free
Press.

Wilson, Daniel J. 2009. “Beggar thy neighbor? The in-state, out-of-state, and aggregate
effects of R&D tax credits.” The Review of Economics and Statistics, 91(2): 431–436.

45



Online Appendix

A Data Description

The data used in this paper includes the Longitudinal Business Database (LBD), the
Patent Data Project (PDP), the Survey of Industrial Research and Development (SIRD),
the Patent Assignment Dataset (PAD), the Compustat Historical Segments and Funda-
mentals Annual. This section provides details about the information of the datasets and
the construction of key variables.

A.1 The Longitudinal Business Database (LBD)

The LBD is an establishment-level data of all US businesses with paid employees collected
by the Census Bureau. The dataset assigns a 6-digit NAICS code to each establishment
capturing its main production activities and a firm ID to all establishments belonging to
the same firm. The 6-digit NAICS code is constructed by Fort, Klimek et al. (2016) and is
consistent over the years.
Production Scope A firm’s production scope is defined as the number of unique 6-digit
NAICS codes of all the establishments belonging to the focal firm. The production scope
by year from 1978 to 2006 is defined as the average production scope of each year. Al-
though the average number of establishments per firm increases in the sample period,
the average scope decreases, as shown in Figure 1.
Firm Size The LBD documents the number of employees each firm hires in each year.
Firms are defined as being “large” if they have more than 1000 employees and as being
“small” otherwise.

A.2 The Patent Data Project (PDP)

The PDP contains information of all utility patents issued between 1976 and 2006. For
each patent, the data documents the grant year, the (truncated adjusted) citations it re-
ceives, and the assignees (entities that the patent is granted to). Using the the Business
Dynamics Statistics of Patenting Firms (BDS-PF) patent assignee-FIRMID crosswalk from
the Census, this paper matches patents in the PDP with the LBD, therefore, derives all
patents in the US that were granted to employer businesses between 1978 and 2006.
Indicator of Innovating Firms This paper defines innovating firms as firms in the LBD
that have ever issued patents between 1978 and 2006 and non-innovating firms otherwise.
This indicator serves as a classification of firms’ innovating activities in Figure 1.
Matching Rate between Innovation and Production For patents granted to a firm in
the LBD, this paper identifies whether their technology classes match the industries of
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the firm using the concordance built by Silverman (2002) and the SIC-NAICS crosswalk
from the Census. Silverman (2002) constructs a frequency distribution of the proportion
of patents assigned to a 4-digit IPC code and to a Canadian 4-digit SIC code indicating
the usage of the patents manually by the Canadian Patent Examiners. Then it links the
Canadian SIC codes to the US 4-digit SIC codes. This paper further links the US SIC
codes to the 6-digit NAICS codes. Therefore, there is a concordance between the patent
technology classes and the industry usage. Using this concordance, the paper derives the
average matching rate between patents’ technology classes and their firms’ industries by
year, which is presented in Figure 3b.

A.3 The Survey of Industrial Research and Development (SIRD)

The SIRD is an annual sample survey conducted by the Census Bureau that targets all
industrial companies with 5 or more employees that perform R&D in the US. It intends to
represent all-for-profit R&D-performing companies, either publicly or privately held. The
sample is selected from the Business Register (BR) that cover all US firms with paid em-
ployees. The key variables include the sample firms’ R&D expenditure, domestic sales,
total employment, character of R&D work (basic research, applied research, and develop-
ment), etc. The macro- and industry-level data is available on the NCSES website.
Total R&D Expense Ratio This ratio is constructed by dividing the total R&D expenses
of large firms to the expenses of small firms by year using the public macro-level data of
the SIRD. The cutoff between large and small firms is 1000 employees. The trend of this
variable is shown in Figure 2a.
R&D Intensity by Size For large and small firms respectively, this paper divides the
total R&D expenses in each year by the total domestic sales of firms in that year. The
construction of this variable is also using the public macro-level data. The trend of this
variable is shown in Figure 2b.
Share of Research Spending on Basic Research This paper defines two measures of the
basic research share. The first measure is the ratio of basic research expenses to the sum
of basic research and applied research expenses; the second measure is the ratio of basic
research expenses to the sum of the total R&D expenditure. The trend shown in Figure 5
is using the public macro-level data, while the targets in the calibration of the extended
model is using the micro-level data from the Census Bureau.

A.4 The Patent Assignment Dataset (PAD)

The PAD records all the changes of claims made to the US patents from 1981 to 2020. The
data is from the USPTO website and it documents the type of transactions, the transac-
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tion time, and the assignors’ and the assignee’s information. This paper keeps only the
transaction types “patent sales” and “mergers and acquisitions”. Merging the PAD with
the PDP identifies the patents issued in each year that have ever been transacted. The
transaction can happen any time after the patent application, which can be even before
the patent is issued. Since the PDP stops in 2006, the merged data tracks the transaction
history of all the patents issued in or before 2006. The sample is very slightly affected by
the right-censuring issue, since most of the patents are transacted after application and
within the first 15 years after issuance.
Fraction of Patents Involved in Trading This fraction is derived by dividing the number
of patents issued in each year that have been transacted by the total number of patent
issuances of the year. The trend is shown in Figure ??.

A.5 The Compustat Historical Segments and Fundamentals Annual

The Compustat Fundamentals Annual contains information of all the publicly listed firms
in the US. It records the number of employees, the primary industry (4-digit SIC code),
and the R&D spending of each firm.
Indicator of Innovating Firms in Compustat In Compustat, innovating firms are defined
as firms that have ever reported positive R&D spending or have patents granted between
1978 and 1997 and non-innovating firms otherwise.
R&D Intensity by Size in Compustat The paper keeps the firms that have ever reported
positive R&D spending or have patents granted between 1972 and 2006 to mimic the
innovating firm sample in the SIRD. An innovating firm’s R&D Intensity in Compustat
is defined as the ratio between the R&D spending to the firm’s total sales. The cutoff
between the large and small firms are 1000 employees. The trends are shown in Figure 8.
Firms’ Primary Industry in Compustat The primary industry of each firm in Compus-
tat is based on the 4-digit SIC code assigned to each firm in the Fundamentals Annual.
Manufacturing is corresponding to SIC codes 2000-3999; utility and transportation is cor-
responding to SIC codes 4000-4999; wholesale and retail trade is corresponding to SIC
codes 5000-5999; services is corresponding to SIC codes 6000-8999.

B More Empirical Evidence

B.1 Production Scope with Firm Size Controlled

To control the firm size, a regression of firms’ production scope is run each year on a
dummy variable of whether the firm is innovating or not, employment, and their inter-
action. Then the predicted production scope of innovating and other firms is calculated
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based on the estimated parameters when fixing the employment level at 20 and 1000, re-
spectively. As shown in the two panels of Figure 6, at both employment levels, innovating
firms shrank production scope more than other firms.

(a) 20 Employees (b) 1000 Employees

Figure 6: Trends of Production Scope with Fixed Firm Size
Notes: This figure shows the average number of 6-digit NAICS codes owned by US firms when control-
ling firm size. This is created by running regressions of firms’ production scope each year on a dummy
variable of whether the firm is innovating or not, employment, and their interaction. Panel (a) shows
predictions of a firm’s production scope if the firm has 20 employees. Panel (b) shows predictions of a
firm’s production scope if the firm has 1000 employees.
Sources: Longitudinal Business Database (LBD); the Patent Data Project (PDP).

B.2 Another Measure of Innovation Intensity

Figure 7 shows the (citation-weighted) number of patents per employee for small/medium
firms and large firms. They both increased starting from the early 1980s, but the increase
was more salient for small/medium firms. The rising trends are partly due to the ex-
tension of patentability, but the different slopes of them reflect that small/medium firms
engaged in more R&D activities.

B.3 R&D Intensity in Compustat

This paper checks the R&D by firm size in the Compustat data. The Compustat data
covers all the publicly listed firms in the US, and therefore, is less affected by VC or
other private equity investments. The Compustat Annual Fundamentals records the R&D
spending and sales of each firm, thus, provides a direct measure of innovation activities.

Figure 8 shows the R&D expense to firms’ total sales ratio in the Compustat Fun-
damental Annual by firm size. The threshold for distinguishing small and large firms
remains at 1000 employees. The sample includes all the innovating firms in the Compus-
tat. These firms either have positive R&D spending or have issued patents in the sample
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Figure 7: Patents per Employee by Size
Notes: This figure shows the ratio of the number of citation-weighted patents to the number of employ-
ees for large and small/medium firms with patents in the LBD. This provides another measure of R&D
intensity by firm size that avoids the misreporting issue.
Sources: Longitudinal Business Database (LBD); the Patent Data Project (PDP).

period. This figure indicates that the shift of R&D from large to small firms is a general
phenomenon for all major industries and is robust to private equity investment.

Figure 8: Trends of R&D Intensity by Firm Size and Industry
Notes: This figure shows the R&D expense to firms’ total sales ratio in the Compustat Fundamentals
Annual by year and the firm’s main industry for innovating firms. The blue curve shows the trend for
firms that have more than 1000 employees; the red curve shows the trend of other firms.
Sources: Compustat Fundamentals Annual.

To delve deeper into the relationship between R&D intensity and firm size, this study
categorizes innovating firms’ employment into six distinct brackets: below the 10th per-
centile; 10th to 25th percentile; 25th to 50th percentile; 50th to 75th percentile; 75th to
90th percentile; and above the 90th percentile. Specifically, these percentiles correspond
to firms with approximately 36, 157, 958, 5311, and 22146 employees, respectively. Fig-
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ure 5 presents the evolution of the R&D-to-total-sales ratio among innovating firms in
Compustat over the years. Notably, the analysis reveals that the bulk of the increase in
R&D intensity is attributed to firms falling below the 50th percentile, with smaller firms
exhibiting a more pronounced uptick in this metric.

Figure 9: Trends of R&D Intensity across the Firm Size Distribution
Notes: This figure shows the R&D expense to firms’ total sales ratio in the Compustat Fundamentals
Annual by year and the firm’s employment distribution. Firms’ employment is segmented into six bins:
below the 10th percentile; 10th to 25th percentile; 25th to 50th percentile; 50th to 75th percentile; 75th
to 90th percentile; and above the 90th percentile. Specifically, the 10th, 25th, 50th, 75th, and 90th per-
centiles correspond to firms with approximately 36, 157, 958, 5311, and 22146 employees, respectively.
Sources: Compustat Fundamentals Annual.

B.4 Patent Invalidation Rates

As shown by 10, the invalidation rates of patents in legal disputes experienced a sharp
decrease after the establishment of the CAFC in 1982.

B.5 More Details on Patent Trade

Figure 11a shows the timing of the patent trade in Figure 3a. The blue, red, green, and yel-
low curves display, respectively the fraction of patents (citation-weighted) traded within
four years before issuance, one to five years after issuance, six to ten years after issuance,
and more than ten years after issuance. It should be noted that the descending trend
of the yellow curve after 2000 is due to the right censoring issue. A comparison of the
four curves suggests that most of the increase happened between 1980 and 2000, consis-
tent with the timing of the pro-patent reforms; earlier transactions occurred more often,
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Figure 10: Patent Invalidation Rates in Lawsuits
Notes: This figure displays the average patent invalidation rates of the regional circuit courts by year.
The red vertical line indicates the year of CAFC establishment.
Sources: Henry and Turner (2006)

evidence that the patent market has become more efficient.
Figure 11b illustrates the share of patents transacted through sales (blue curve) and

M&As (red curve) respectively. Both types of transactions experienced an increase in the
1980s and 1990s, with the volume of the latter type being around one-tenth of the volume
of the former. This figure also functions as a robustness check for Figure ?? in Section
4, as it encompasses all transactions (not exclusively those to US firms) and is devoid of
weighting by patent citations.

(a) Patent Trade by Gaps from the Grant Year (b) Patent Trade by Transaction Type

Figure 11: Patent Trade by Different Classifications
Notes: Panel (a) displays the fraction of patents traded at different time windows. The fractions are
weighted by the number of patent citations. Panel (b) displays the share of patents traded through
sales and the share traded through M&As for all patents granted by USPTO. The scale for sales is
shown the left y-axis, and the scale for M&As is shown on the right y-axis. The shares are devoid of
weighting by patent citations.
Sources: Patent Assignment Dataset (PAD); Longitudinal Business Database (LBD).
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C Proof of the Theory

C.1 Proof of Proposition 5.1

Proof. Denote the distribution of production ability and innovation levels among all firms
at the end of the current period as F(m, z′; z). Equation (10) implies that the labor market
clearing condition can be written as

(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ

∫ ∫
mz′dF(m, z′; z) = 1. (25)

Equation (25) can be transformed to

(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ (αHmHz′H + αLmLz′L) = 1, (26)

where z′H and z′L are, respectively, the average innovation level of firms with high and
low production ability at the end of this period. They are defined by

z′H =
1

αH

∫
z′dF(mH, z′; z); (27)

z′L =
1

αL

∫
z′dF(mL, z′; z). (28)

The economy-wide average innovation level at the end of the previous period, z, can then
be expressed as

z =
αHmHzH + αLmLzL

αHmH + αLmL
. (29)

Assume z grows at a constant rate, g, across periods. Then, the labor market clearing
condition can be further transformed to

(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ (αHmH + αLmL)gz = 1. (30)

The wage rate, w, can then be expressed as

w = λ(
η

r̃
)

η
ζ+λ [(αHmH + αLmL)gz]

ζ
ζ+λ , (31)

53



which implies that it grows at a rate of g
ζ

ζ+λ . The total output and capital of the economy

also grow at g
ζ

ζ+λ , since

∫ ∫
Y(m, z′; z)dF(m, z′; z) = (

η

r̃
)

η
ζ (

λ

w
)

λ
ζ (αHmH + αLmL)gz; (32)∫ ∫

K(m, z′; z)dF(m, z′; z) = (
η

r̃
)1+ η

ζ (
λ

w
)

λ
ζ (αHmH + αLmL)gz, (33)

where w grows at the rate g
ζ

ζ+λ , z grows at the rate, g, and all the other parameters are
fixed.

A firm with production ability m and an innovation level z at the beginning of the
period may or may not update its innovation level through R&D or trade. If it updates
the innovation level, the profit of the current period is

π(m, z′; z) = ζm(
η

r̃
)

η
ζ (

λ

w
)

λ
ζ (z + γz). (34)

Otherwise, the profit is

π(m, z; z) = ζm(
η

r̃
)

η
ζ (

λ

w
)

λ
ζ z. (35)

Denote z̃ = z

z
λ

ζ+λ

, z̃ = z

z
λ

ζ+λ

. Plugging the expression of w in (31) into (34) and (35) derives

π(m, z′; z) = Jm(z̃ + γz̃), π(m, z; z) = Jmz̃, (36)

where J = ζ( η
r̃ )

η
ζ+λ [(αHmH + αLmL)g]−

λ
ζ+λ . So, the difference of firm profit with the up-

dated and non-updated innovation levels is Jmγz̃, which is not a function of the firm’s
current innovation level, z.

Next, a guess-and-verify procedure is used to derive the value of the firm at the be-
ginning of the period, V(m, z; z), and the value of the patent agent, A(z). Conjecture

V(m, z; z) = v1(m)z̃ + v2(m)z̃; A(z) = az̃. (37)

Then, the surplus of the firm if being a buyer in the Nash bargaining problem (14) is

[π(m, z′; z) + rEV(m′, z′; z′)]− [π(m, z; z) + rEV(m′, z; z′)] = [Jm + rE(v1(m′))g−
λ

ζ+λ ]γz̃,
(38)
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which is not a function of the firm’s innovation level, z, either. Denote this surplus as

∆ψ(m; z) and use B(m) as an abbreviation for [Jm + rE(v1(m′))g−
λ

ζ+λ ]. We have

∆ψ(m; z) = B(m)γz̃. (39)

The price this firm has to pay to buy a patent can be expressed as (Point 10)

pb(m; z) = θ∆ψ(m; z) + (1 − θ)rδaz̃′ = θB(m)γz̃ + (1 − θ)rδag
ζ

ζ+λ z̃, (40)

i.e., the buying price is the bargaining power of the seller times the trading surplus of the
buyer. It only depends on the production ability of the buyer and the aggregate innova-
tion level. By the zero-profit condition of the patent agents, the expected price a firm gets
if selling a patent on the market is equal to the value of an agent, i.e., q(z) = az̃. The sell-
ing price depends on the shares of searching effort from high-type buyers and low-type
buyers. Since we focus on a symmetric equilibrium, the shares are constants on any arc
of the technology circle, i.e.,

nbH(d)
nb(d)

=
nbH
nb

, ∀d, (41)

where nbH
nb

and nbL
nb

are the share of potential buyers with high and low production ability.
To solve firms’ optimal innovation intensity and the “keep or sell” decision, it is nec-

essary to derive the expressions of s and b(ω) in problem (12). Consider any arc on the
circle. Without loss of generality, Figure 12 shows an arc d with length |d|. The total
search effort by potential sellers on d equals to the number of potential sellers that have a
patent located inside d. On a symmetric balanced growth path, sellers’ patents are evenly
distributed on the circle. So, na(d) = |d|na.

Figure 12: Schematic Diagram

Potential buyers that spend effort searching on d may have various scope. I classify
these buyers according to the length of their scope. For potential buyers with scope length
equal to |ω|, their locations may span from 1 to 3. Buyers at location 1 or 3 spend measure
0 of search effort on d, while buyers at location 2 spend measure |d|

|ω| of search effort on d.

55



The total measure of search effort on d conditional on the buyer having |ω| as the scope
length is an integral of effort from location 1 to 3, which can be expressed as

∫ |d|

0

i
|ω|di +

∫ |ω|

|d|

|d|
|ω|di +

∫ |d|+|ω|

|ω|

|d|+ |ω| − i
|ω| di = |d|, ∀|ω|, |d|. (42)

This conditional measure does not rely on the scope length. So, the unconditional total
measure of search effort on d is d times the total number of potential buyers, i.e., nb(d) =
|d|nb.
The number of matches on the arc d equals to

M(s(d), b(d)) = |d|ϕnν
an1−ν

b , ∀d. (43)

Potential buyers with scope ω will only search within its scope, so, the probability of
meeting a seller is

b(ω) =
M(na(ω), nb(ω))

nb(ω)
= ϕ

(na

nb

)ν ≡ b, (44)

which is a constant and does not depend on the scope of the buyer. The probability for a
potential seller to meet a buyer is

s = lim
|d0|→0

M(na(d0), nb(d0))

na(d0)
= ϕ

(nb
na

)1−ν, (45)

which is also a constant (Point 3).
Firms keep within-scope innovations if and only if doing so yields greater value than

selling them (Equation (13)). Plugging the expressions derived above into Equation (13)
shows that

1k =

1 [1 − b(1 − θ)]B(m)γ + b(1 − θ)rδag
ζ

ζ+λ ≥ a

0 Otherwise,
(46)

which only depends on the production ability, m, of the firm (Point 8).
Plugging the matching probabilities b(ω) and s into problem (12) derives the solution of
firms’ R&D success rate.

i∗(ω, m) ={ 1
(1 − σ)χ

[X(ω)1k(m)((1 − (1 − θ)b)B(m)γ + b(1 − θ)rδag
ζ

ζ+λ )

+ (1 − X(ω)1k(m))a]}
1
ρ ,

(47)
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which only depends on the firm’s production scope and production ability (Point 5).
The firm’s value at the innovation stage, D(ω, m, z; z) is then

D(ω, m, z; z) =B(m)z̃ + [
(1 − σ)ρ

1 + ρ
χi∗(ω, m)1+ρ + b(1 − θ)(B(m)γ − rδag

ζ
ζ+λ ) (48)

+ rEv2(m′)g
ζ

ζ+λ ]z̃. (49)

If 1k(m) = 1, D(ω, m, z; z) increases in X(ω), and therefore, is larger when ω is closer to
the firm’s center for any given length of ω. Consequently, firms always choose to span
symmetrically around their center. The length of the firm’s production scope (|ω|) is
determined by problem (16),

i∗(ω, m)X′(|ω|)1k(m)[(1 − (1 − θ)b)B(m)γ + b(1 − θ)rδag
ζ

ζ+λ − a] = µ|ω|ι. (50)

If 1k(m) = 0, i∗(ω, m) and D(ω, m, z; z) do not depend on the firm’s production scope.
Due to the management cost, firms always choose ω = 0.

Combining the two cases of 1k(m), the solution to (50) is only a function of m, i.e,
|ω∗(m, z; z)| = Ω(m) (Point 4).

Plugging in the solution of i∗(ω, m) and ω∗(m, z; z) into the government budget con-
straint derives (Point 6)

T = σ(αHCi(i(Ω(mH), mH)) + αLCi(i(Ω(mL), mL))). (51)

The number of buyers of each type, (nbH, nbL), are the share of firms in each type that
do not get an innovation output matching their production scope. The total number of
buyers is the summation of the buyers of the two types. They are expressed as (Point 9)

nbH = αH(1 − i∗(ω∗(mH), mH)X(ω∗(mH))1k(mH)); (52)

nbL = αH(1 − i∗(ω∗(mL), mL)X(ω∗(mL))1k(mL)); (53)

nb = nbH + nbL. (54)

The number of agents is the summation of surviving patents from the previous period
and the amount of firms that successfully innovate, but the output falls outside of their
own production scope in the current period,

na =δna(1 − s) + αHi∗(ω∗(mH), mH)(1 − X(ω∗(mH))1k(mH))

+ αLi∗(ω∗(mL), mL)(1 − X(ω∗(mL))1k(mL)).
(55)

Solving the equation above derives the expression for na in Point 9.
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The value of the firm at the beginning of the period, V(m, z; z), can be expressed as

V(m, z; z) = D(Ω(m), m, z; z)− Ce(ω; z) ≡ v1(m)z̃ + v2(m)z̃, (56)

where

v1(m) = B(m); (57)

v2(m) = [
(1 − σ)ρ

1 + ρ
χi∗(ω, m)1+ρ + b(1 − θ)(B(m)γ − rδag

ζ
ζ+λ ) (58)

+ rEv2(m′)g
ζ

ζ+λ − µ|Ω(m)|1+ι

1 + ι
]. (59)

Since both v1(m) and v2(m) are only functions of m, the value function, V(m, z; z), is
consistent with the conjecture (Point 7).
The value of an agent is equal to the expected value of patent sales in the current period
plus the continuation value, i.e.,

az̃ = s[
nbH
nb

pb(mH, z; z) +
nbL
nb

pb(mL, z; z)] + (1 − s)rδag
ζ

ζ+λ z̃ (60)

Solving it derives the expression for a,

a =
s[nbH

nb
θB(mH)γ + nbL

nb
θB(mL)γ]

1 − (1 − sθ)rδg
ζ

ζ+λ

(61)

Since a is a constant, the value of an agent is linear in the aggregate innovation level
(Point 7). The zero-profit condition of the agent requires that the price at which it collects
patents, q, is equal to its value.

The representative household’s problem can be expressed as

W(a; z) = max
c,a′

u(c) + βW(a′; z)

s.t., c + a′ =
1
r

a + Π,

where a is the asset holding of the household in the current period; 1
r is the capital return

rate, where its relationship with the capital cost, r̃, is r̃ = 1
r − 1 + δ; Π is the total profit

of firms in this economy. Because all firms are owned by the household, the total profit is
a part of the household’s income. Solving the problem derives the following relationship
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on consumption across periods,

c′

c
= (

β

r
)

1
ϵ . (62)

Since consumption grows at the same rate, g
ζ

ζ+λ , as the total output, and the interest rate
is fixed over time, we have (Point 2)

r =
β

gϵζ/(ζ+λ)
. (63)

The growth rate of the employment-weighted average innovation level of the econ-
omy, g, can be expressed by the following equation according to the definition,

g ≡ αHmHzH
′ + αLmLzL

′

αHmHzH + αLmLzL
. (64)

In the balanced growth path equilibrium, the ratio of the innovation level of firms with
high production ability to that of the firms with low production ability should be stable
across periods, i.e.,

zH
′

zL′
=

zH

zL
≡ o, (65)

where o is a constant. Then (64) implies that

g =
zH

′

zH
=

zL
′

zL
. (66)

Equations in (66) show that the growth rate in the innovation level of the aggregate econ-
omy is the same as the growth rate of firms across types.

The change in the average innovation levels of high- and low-type firms consists of
two components.
(i) There is a reshuffling of firms at the beginning of each period because of the transition
of production ability.
(ii) Firms update their innovation level through R&D or trade of patents.

The average innovation level of each type of firms after the transition of production
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ability but before the innovation stage in this period can be expressed as follows,

zHr ≡
αHqHHzH + αLqLHzL

αHqHH + αLqLH
; (67)

zLr ≡
αLqLLzL + αHqHLzH

αLqLL + αHqHL
. (68)

Firms update their innovation level in the R&D or trading process following the law of
motion in (1). So, the growth rate of each type of firms in this process (denoted as gH and
gL) depends on the share of them that use their own innovation output and the share that
successfully buy a patent on the market.

gH ≡ zH
′

zHr
= 1 + [i∗(ω∗(mH), mH)X(ω∗(mH))1k(mH)

+ (1 − i∗(ω∗(mH), mH)X(ω∗(mH))1k(mH)b)]γ
z

zHr
;

(69)

gL ≡ zL
′

zLr
= 1 + [i∗(ω∗(mL), mL)X(ω∗(mL))1k(mL)

+ (1 − i∗(ω∗(mL), mL)X(ω∗(mL))1k(mL))b]γ
z

zLr
.

(70)

Using the relationship zH
′ = gHzHr and plugging equations (65), (67), (68), (69) and (70)

into the first equation in (66) derive the solutions for g and o through the following system
of equations,

g =
gH(αHqHH + αLqLH

1
o )

αHqHH + αLqLH
; (71)

o =
gH(αHqHHo + αLqLH)

αHqHH + αLqLH

αLqLL + αHqHL

gL(αLqLL + αHqHLo)
. (72)

Since all of the other variables and parameters are fixed in the equation system, the solu-
tions of g and o are indeed both constants (Point 1).

C.2 Characterization of Proposition 7.1

There exists a symmetric balanced growth path of the form:
1. The employment-weighted growth rate of the aggregate innovation level, g, and the ratio of the
average innovation level of firms with high production ability to that of firms with low production
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ability, o, defined by,

g =

∫ ∫
m′z′′dF(m′, z′)/

∫ ∫
m′dF(m′, z′)∫ ∫

mz′dF(m, z)/
∫ ∫

mdF(m, z)
; o =

∫
z′dF(m, z)|m=mH∫
z′dF(m, z)|m=mL

,

are constants.
2. The interest factor r = β/gϵζ/(ζ+λ); the rental rate on capital r̃ = gϵζ/(ζ+λ)/β − 1 + δ.
3. The odds of a successful match for a potential buyer, bj(ω), and for a potential seller, sj, on the
market of each type (basic or applied) of patents, only depend on the total number of patent buyers

and sellers on that market, i.e., bj(ω) = ϕ(nj
a

nj
b

)ν, sj = ϕ(
nj

b

nj
a
)1−ν, where j ∈ {a, b}.

4. The production scope of each firm spans symmetrically around the center, and the length of the
scope depends only on the production ability of the firm, i.e., |ω(m, z; z)| = Ω(m).
5. The success rates of applied and basic research do not depend on the firm’s innovation level, z,
or the economy-wide innovation level, z, i.e., ij(ω, m, z; z) = ij(ω, m), j ∈ {a, b}.
6. The government budget constraint is,

T = σ ∑
j∈{a,b}

(αHCij(ij(Ω(mH), mH)) + αLCij(ij(Ω(mL), mL))).

7. The value function V(m, z; z) is linear in z̃ and z̃, i.e., V(m, z; z) = v1(m)z̃ + v2(m)z̃. The
value of a type-j agent is linear in z̃, i.e., Aj(z) = ajz̃. z̃ = z/zλ/(ζ+λ) and z̃ = zζ/(ζ+λ).
8. Keeping or selling a within-scope innovation only depends on the firm’s production ability, m.
9. The number of buyers of both types (nj

bH, nj
bL) and the number of sellers (nj

a) for j (j ∈ {a, b})
type of patents are

nj
bH = αH(1 − ij∗(ω∗(mH), mH)X j(ω∗(mH))1

j
k(mH));

nj
bL = αH(1 − ij∗(ω∗(mL), mL)X j(ω∗(mL))1

j
k(mL));

nj
a =

αHij∗(ω∗(mH), mH)(1 − X j(ω∗(mH))1
j
k(mH)) + αLij∗(ω∗(mL), mL)(1 − X j(ω∗(mL))1

j
k(mL))

1 − δ(1 − s)
.

10. The buying price and the expected selling price of a j-type (j ∈ {a, b}) patent is

pj
b(m, z; z) = θ(Jm +

r
gλ/(λ+ζ)

E[v1(m′)|m])γjz̃ + (1 − θ)rδajg
ζ

ζ+λ z̃;

qj(z) = Aj(z) = ajz̃,

where J is a constant.
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C.3 Proof of Proposition 7.1

Proof. The proof is very similar to that of Proposition 5.1. One difference is that the profit
of each type of firms now have four possible cases. (i) The firm gets both applied and
basic R&D output (either through own innovation or purchasing them from the market).
The profit in this case is π(m, zab; z) = Jm(z̃ + γaz̃ + γbz̃). (ii) The firm gets only applied
R&D output. The profit is π(m, za; z) = Jm(z̃ + γaz̃). (iii) The firm gets only basic R&D
output. The profit is π(m, zb; z) = Jm(z̃ + γbz̃). (iv). The firm gets neither R&D output.

The profit is π(m, z; z) = Jm(z̃). J = ζ( η
r̃ )

η
ζ+λ [(αHmH + αLmL)g]−

λ
ζ+λ for all the four cases.

Then, from the Nash bargaining problem between the buyer and the seller, it can be
derived that for a j-type patent (j ∈ {a, b}), the buying price can be expressed as

pj
b(m; z) = θB(m)γjz̃ + (1 − θ)rδajg

ζ
ζ+λ z̃, (73)

where B(m) = [Jm + rE(v1(m′))g−
λ

ζ+λ ].
The value of an agent that buys a type-j innovation is

Aj(z) = ajz̃ =

sj[
nj

bH

nj
b

θB(mH)γ
j +

nj
bL

nj
b

θB(mL)γ
j]

1 − (1 − sθ)rδg
ζ

ζ+λ

z̃ (74)

The zero-profit condition of the agent requires that the price at which it collects patents,
qj(z), is equal to Aj(z).

The optimal success rate of the j-type R&D (j ∈ {a, b}) is

ij∗(ω, m) ={ 1
(1 − σ)χj [X

j(ω)1
j
k(m)((1 − (1 − θ)bj)B(m)γj + bj(1 − θ)rδajg

ζ
ζ+λ )

+ (1 − X j(ω)1
j
k(m))aj]}

1
ρ ,

(75)

which also only depends on the firm’s production scope and production ability.
If the firm keeps at least one within-scope innovation, i.e., ∑j∈{a,b} 1

j
k(m) ≥ 1, the

length of the firm’s production scope is determined by,

∑
j∈{a,b}

ij∗(ω, m)X j′(|ω|)1j
k(m)[(1 − (1 − θ)bj)B(m)γj + bj(1 − θ)rδajg

ζ
ζ+λ − aj] = µ|ω|ι.

(76)

Otherwise, the firm chooses ω = 0. In both cases, the optimal scope is only a function of
m.

The growth rates of each type of firms in the R&D and search and matching stages
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are respectively

gH ≡ zH
′

zHr
= 1 + ∑

j∈{a,b}
[ij∗(ω∗(mH), mH)X j(ω∗(mH))1

j
k(mH)

+ (1 − ij∗(ω∗(mH), mH)X j(ω∗(mH))1
j
k(mH))bj]γj z

zHr
;

(77)

gL ≡ zL
′

zLr
= 1 + ∑

j∈{a,b}
[ij∗(ω∗(mL), mL)X j(ω∗(mL))1

j
k(mL)

+ (1 − ij∗(ω∗(mL), mL)X j(ω∗(mL))1
j
k(mL))bj]γj z

zLr
.

(78)

Still, the growth rate in the social innovation level and the ratio of the innovation
levels between high- and low-type firms are constants and equal to

g =
gH(αHqHH + αLqLH

1
o )

αHqHH + αLqLH
; (79)

o =
gH(αHqHHo + αLqLH)

αHqHH + αLqLH

αLqLL + αHqHL

gL(αLqLL + αHqHLo)
. (80)

D Calibration

D.1 Estimation of the Matching Elasticity

Table 15 displays the estimation results of the elasticity in the matching function of the
patent trading market. The first three columns use raw numbers, while the last three
columns use patent citation-weighted numbers. The numbers are summed at the 6-digit
NAICS code level in columns (1) and (4); at the 4-digit NAICS code level in columns (2)
and (5); at the 2-digit NAICS code level in columns (3) and (6). In most columns, the
summation of the two coefficients is not far from 1, suggesting that the matching function
is close to being constant-return-to-scale. The coefficient of the number of sellers, which
corresponds to the matching elasticity(ν), is in the range of 0.598-0.821. The calibration
then sets the value of ν as 0.70.
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Table 15: Estimation of the Elasticity in the Matching Function

Ln(Number of Matches)
(1) (2) (3) (4) (5) (6)

Raw Citation-Weighted
Ln(Num. of Sellers) 0.598 0.693 0.780 0.604 0.694 0.821

(0.006) (0.012) (0.049) (0.006) (0.012) (0.050)
Ln(Num. of Buyers) 0.0713 0.105 0.291 0.0698 0.102 0.222

(0.008) (0.018) (0.089) (0.008) (0.018) (0.090)
Observations 20000 5700 500 20000 5700 500
R-squared 0.873 0.936 0.984 0.871 0.935 0.983

Notes: The dependent variable is the logarithm of the number of matches at different level of sectors.
The numbers are at the 6-digit NAICS code level in columns (1) and (4); at the 4-digit NAICS code level
in columns (2) and (5); at the 2-digit NAICS code level in columns (3) and (6). Columns (1)-(3) use raw
numbers, while columns(4)-(6) use patent citation-weighted numbers. The number of observations is
rounded to the nearest 100 to comply with the disclosure requirement of the Census Bureau.

Table 16: Relationship of the Within-Scope Probability and the Number of Industries

VARIABLE Log(Within-Scope Probability)
Ln(Num. of Industries) 0.7643

(0.0134)
Constant -4.443

(0.0370)
Observations 150
R-squared 0.9547

Notes: Firms are grouped by the number of 6-digit NAICS codes they have. The dependent variable is
the average likelihood that firms’ patents match their production in each group. The independent vari-
able is the logarithm of the number of 6-digit NAICS codes in each group. The number of observations
is rounded to the nearest 50 to comply with the disclosure requirement of the Census Bureau.

D.2 Estimation of the Within-scope Probability Function

Table 16 shows the estimation of the within-scope probability function (X(ω)). To avoid
disclosure of the information of specific firms, firms are grouped by the number of 6-digit
NAICS codes they have. Then the average likelihood that firms’ patents match their pro-
duction is calculated for each group. Then, X(ω) is estimated by running regressions of
the likelihood on the number of industries. The high R-squared confirms that the function
form assumed in the model can capture the actual relationship.

D.3 Decomposition of the Growth Rate

According to Equation (71), the social average growth rate in the innovation level de-
pends on the growth rate of firms with high production ability, gH, and the ratio of in-
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novation levels between firms with high and low production ability, o. Further, Equa-
tion (69) suggests that gH depends on the lock-step updating rule of the innovation level
from R&D and patent trade, and the term, z

zHr
. Since the term, z

zHr
, only depends on o

and exogenous parameters, the social average growth rate, g, can be separated into two
parts—the innovation level increase from R&D and patent trade, and the reallocation of
resources across firm sizes that results in a change in the relative innovation level, o. The
contribution of the former source can be obtained by fixing o while changing the R&D
and patent trade process; the contribution of the latter source can be obtained by fixing
the R&D and patent trade process while changing o.

D.4 Calibration of the Extended Model

This paper calibrates the newly added parameters, {χj, ρj, γj}, and the two probability
functions, X j(.), where j is an indicator of basic or applied research, in the following way.
The ratio of the step sizes, γb

γa
, is set to be consistent with Akcigit, Hanley and Serrano-

Velarde (2021). The within-scope probability functions are estimated by the same method
as the estimation of X(.) in the baseline model, except that the regression is run on two
separate samples—patents from basic research and patents from applied research or de-
velopment in the SIRD. The scale parameter of the applied research cost function (χa) is
normalized to be 1. The scale parameter of the basic research cost function (χb), the step
size of applied research (γa), and the two elasticities (ρa, ρb) are pinned down together
with {ϕ, θ, µ, ι} in the calibration. Two additional moments are added—the share of basic
research expense in total R&D expense, respectively, for firms with high and low produc-
tion ability. All the other parameters are disciplined by the method used to calibrate the
baseline model, and the decomposition method is the same as before. Table 17 shows the
results. The estimated within-scope probability functions suggest that when the industry
number of a firm is not too large, it is harder for basic research output to match the firm’s
production compared to applied research. In the calibration, the annual growth rate is
mostly affected by γa; the basic research share and the R&D cost to domestic sales ratio of
firms with high and low production ability are mostly governed by χb, 1+ ρa, and 1+ ρb.

The extended model is calibrated to both the initial and the ending balanced growth
paths. In this process, parameters corresponding to the four mechanisms, {ϕ, θ, σ, µ, ι, γa,
χb, ρa, ρb}, are changed to match the data moments in the two periods.

The model fit of the two balanced growth paths are shown respectively in Table 18
and Table 19. Overall, the model matches the data well.
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Table 17: Parameter Values of the Extended Model

Parameter Description Value Identification
Priori Info.
γb
γa

Step Size Ratio 1.6 Akcigit et al. (2021)
χa Applied R Cost, Scale 1 Normalization
Estimation
Xa(ω) Applied R, Within-Scope Prob. e−3.837 ∗ |ω|0.602 Regression
Xb(ω) Basic R, Within-Scope Prob. e−4.944 ∗ |ω|0.932 Regression
Model
γa Applied R Step Size 1.08 Growth Rate
χb Basic R Cost, Scale 4.15 Basic Research Share,
1 + ρa Applied R Cost, Elasticity 1.66 R&D Cost/Sales
1 + ρb Basic R Cost, Elasticity 1.19 Ratio (H and L)

Notes: The newly added parameters are calibrated by a priori information, direct estimation, and mini-
mizing the distance between the model and data moments. When calculating the minimized distance,
the new parameters are jointly calibrated with the old parameters in Table 4.

Table 18: Model Fit for Key Moments in the Initial Balanced Growth Path

Targets Data Model
Economic Growth Rate(1981-1985) 2.13% 2.13%
R&D Cost/Sales of H Firms(1981-1985) 3.62% 3.62%
R&D Cost/Sales of L Firms(1981-1985) 2.83% 2.83%
Basic R Share of H Firms(1981-1985) 4.20% 4.20%
Basic R Share of L Firms(1981-1985) 3.73% 3.73%
Avg. Number of Industries of H Firms(1981-1985) 11.81 11.81
Avg. Number of Industries of L Firms(1981-1985) 1.92 1.92
The Share of Patents Transacted(1983) 23.2% 23.2%

Notes: The model and data moments in the initial balanced growth path are almost the same, showing
the model fits the data well.

E Supplementary Materials for Empirical Analysis

E.1 Summary Statistics

Panel A and B in Table 20 respectively show summary statistics of the regression samples
for production scope and R&D intensity.45 The number of industries per firm experiences
a decrease after the CAFC (Post=1), while the average employment remains at nearly
the same level. The average share of employment in the two highly treated industries is
around 2%. The overall R&D intensity increases after the CAFC (Post=1). The common
control variables are comparable in magnitude in the two panels. The average invalida-

45The number of observations is rounded to the nearest 1000 to comply with the disclosure requirement
of the Census Bureau.
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Table 19: Model Fit for Key Moments in the Ending Balanced Growth Path

Targets Data Model
Economic Growth Rate(1996-2000) 2.22% 2.22%
R&D Cost/Sales of H Firms(1996-2000) 3.15% 3.15%
R&D Cost/Sales of L Firms(1996-2000) 6.71% 6.71%
Basic R Share of H Firms(1996-2000) 4.61% 4.61%
Basic R Share of L Firms(1996-2000) 11.46% 11.46%
Avg. Number of Industries of H Firms(1996-2000) 6.31 6.31
Avg. Number of Industries of L Firms(1996-2000) 1.61 1.61
The Share of Patents Transacted(2000) 37.0% 37.0%

Notes: The model and data moments in the ending balanced growth path are almost the same, showing
the model fits the data well.

tion rate across different regions is around 54%.46 There is a drop in the federal corporate
income tax rate and a rise in both the federal and state-level R&D tax credits.

E.2 Placebo Tests

It is possible that the differential changes in the number of industries and R&D intensity
across regions and firms are due to pre-trends instead of the policy impact. To check
whether there are pre-existing trends, this study runs the same regressions in Equation
(22)–(24) on the pre-CAFC sample (1976-1982). All variables are defined as the same as
before, except the post dummy. Now, the post dummy (written as post2) equals zero
if the observation year is before or in 1979; equals one if after 1979.47 If there are pre-
trends in production scope, β in Equation (22) and β1 and β2 in Equation (23) should still
be significantly negative. However, as shown in Table 21 and Table 22, they are either
positive or tiny in absolute magnitude. None of them is significant, showing that the
differential changes in production scope are not due to pre-existing trends.

If there are pre-trends in the R&D intensity, β1 in Equation (24) should be still positive
while β2 still negative. However, as shown in Table 23, their signs are flipped, showing
that the differential changes in R&D intensity are not due to pre-existing trends. There-
fore, the empirical results in section 8.4 can be viewed as evidence of causality from the
policy reforms to firms’ shrinkage in production scope and reallocation of R&D activities.

46There is very little change in this rate before and after the CAFC because both of them are at the pre-
CAFC level.

47This study also tries other ways of segmenting the pre-CAFC sample. The results are similar.
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Table 20: Summary Statistics of the Regression Sample

Mean Standard Deviation
Sample All Post=0 Post=1 All Post=0 Post=1
Panel A
Observations 268000 131000 136000 268000 131000 136000
Number of Industries 3.066 3.074 3.058 6.722 6.952 6.494
Employment 1187 1187 1187 9670 10780 8467
Highly Treated Share 0.02101 0.01987 0.0221 0.1337 0.129 0.138
Pre-CAFC Invalid. Rate 0.5375 0.5381 0.5369 0.1082 0.1082 0.1083
Real GDP 144000 127200 160200 115000 95460 129100
Effective Federal Tax Rate 0.4105 0.4335 0.3883 0.0434 0.01645 0.04934
Effective State Tax Rate 0.07406 0.07325 0.07484 0.02676 0.0279 0.02558
Federal R&D Tax Credits 0.01443 0.004603 0.02388 0.01145 0.007372 0.004747
State R&D Tax Credits 0.0006073 0.0001753 0.001023 0.003604 0.002553 0.004343
Panel B
Observations 41000 20000 21000 41000 20000 21000
Sum of Weight 220000 100000 120000 220000 100000 120000
R&D Intensity 0.1268 0.06814 0.176 0.9789 0.4915 1.247
Employment 1355 1094 1574 13570 9913 16000
Small Firm Share 0.8989 0.8956 0.9017 0.3014 0.3058 0.2977
Pre-CAFC Invalid. Rate 0.5387 0.5446 0.5338 0.1103 0.1089 0.1113
Real GDP 146500 129300 161000 121600 99300 135900
Effective Federal Tax Rate 0.4068 0.4339 0.3839 0.04653 0.01692 0.05101
Effective State Tax Rate 0.07348 0.07321 0.0737 0.02763 0.02926 0.02617
Federal R&D Tax Credits 0.01473 0.004456 0.02336 0.01114 0.007208 0.004627
State R&D Tax Credits 0.0006286 0.0001987 0.0009896 0.002836 0.002718 0.002883

Notes: Panel A shows the summary statistics of the regression sample for production scope. The sample
contains the innovating firms in the LBD that existed before or in 1982, the year of the establishment
of the CAFC. Panel B shows the summary statistics of the regression sample for R&D intensity. The
sample contains all the firms in the SIRD that existed before or in 1982. the R&D intensity regression
is weighted by the sample weight assigned to each observation in the SIRD. The sample period for all
regressions is from 1976 to 1989, 7 years before and after the reform. The number of observations is
rounded to the nearest 1000 to comply with the disclosure requirement of the Census Bureau.
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Table 21: Placebo Test-DiD Regression on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

Invalidation Rate*Post2 0.00196 0.0206 0.000678 -0.00194
(0.013) (0.014) (0.013) (0.012)

Ln(Employment) 0.0539*** 0.0529*** 0.0526*** 0.0527***
(0.003) (0.003) (0.003) (0.003)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 131000 131000 131000 131000
R-squared 0.97 0.97 0.97 0.97

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.

Table 22: Placebo Test-DDD Regression on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

High treat*Invalidation Rate*Post2 0.00965 0.00894 0.011 0.0121
(0.038) (0.038) (0.038) (0.039)

Invalidation Rate*Post2 0.00177 0.0204 0.000479 -0.00213
(0.012) (0.014) (0.012) (0.012)

High treat*Post2 -0.0094 -0.00877 -0.00935 -0.00908
(0.020) (0.020) (0.020) (0.020)

Ln(Employment) 0.0539*** 0.0530*** 0.0526*** 0.0527***
(0.003) (0.003) (0.003) (0.003)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 131000 131000 131000 131000
R-squared 0.97 0.97 0.97 0.97

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.
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Table 23: Placebo Test-DDD Regression on R&D Intensity

Dependent Variable R&D Expenses to Domestic Sales Ratio
(1) (2) (3) (4)

Small*Invalidation Rate*Post2 -0.0467 -0.057 -0.0417 -0.057
(0.048) (0.052) (0.048) (0.052)

Invalidation Rate*Post2 0.0772* 0.0994** 0.0734* 0.0994**
(0.039) (0.049) (0.039) (0.049)

Small*Post2 0.042 0.0584* 0.0497* 0.0584*
(0.028) (0.031) (0.029) (0.031)

Ln(Employment) 0.00197 0.0045 0.00435 0.0045
(0.024) (0.025) (0.025) (0.025)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations (Weighted) 100000 100000 100000 100000
R-squared 0.853 0.853 0.853 0.853

Notes: The dependent variable is the firm’s R&D-expenses-to-domestic-sales ratio. The four columns
have different control variables. Standard errors are clustered by circuit court regions × the post
dummy. The number of observations is rounded to the nearest 1000 to comply with the disclosure
requirement of the Census Bureau.
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