
Technology-Driven Market Concentration
through Idea Allocation*

Yueyuan Ma† Shaoshuang Yang‡

This Version: May 2025

Abstract

Using a newly-created measure of technology novelty, this paper identifies
periods with and without technology breakthroughs from the 1980s to the 2020s in
the US. It is found that market concentration decreases at the advent of revolutionary
technologies. We establish a theory addressing inventors’ decisions to establish
new firms or join incumbents of selected sizes, yielding two key predictions:
(1) A higher share of inventors opt for new firms during periods of heightened
technology novelty. (2). There is positive assortative matching between idea
quality and firm size if inventors join incumbents. Both predictions align with
empirical findings and collectively contribute to a reduction in market concentration
when groundbreaking technologies occur. Quantitative analysis shows the overall
slowdown in technological breakthroughs can capture 95.9% of the rising trend
in market concentration and the correlation between the model-generated and the
actual detrended market concentration is 0.910.
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1 Introduction

The rise in market concentration in the U.S. since the late-1990s has raised significant
concerns. This trend has been marked by declining firm entry and the expansion of highly
productive incumbent firms (Autor et al. (2020)). The existing literature attributes this
shift to the increasing market power of incumbents, which strategically deter the entry
of new businesses (Cunningham, Ederer and Ma (2021); Akcigit and Goldschlag (2023)),
thereby hindering the diffusion of innovative ideas. This paper offers a new perspective,
providing empirical evidence and structural analysis to show that technological waves
play an important role in shaping market concentration by reallocating innovative ideas
between incumbents and new entrants. The slowdown in technological breakthroughs
contributes to rising concentration, consistent with the view that good ideas are becoming
harder to find (Bloom et al. (2020)).

Using a newly developed measure of technological novelty, this paper identifies
distinct periods in the U.S. from the 1980s to the 2020s characterized by breakthrough
innovations or incremental advances that build on existing technologies. The analysis
reveals a declining long-term trend in technological novelty, punctuated by cyclical
waves. During peaks, groundbreaking innovations that depart significantly from existing
technologies emerge, whereas during troughs, most new technologies reflect a mature
and incremental phase of development.

Surprisingly, we find that market concentration, as measured by the Herfindahl-
Hirschman Index (HHI) of firm sales, employment, or payroll, exhibits both a rising trend
and a cyclical pattern that is notably negatively correlated with waves of technological
novelty. This pattern suggests that the emergence and maturation of novel technologies
play a significant role in shaping the dynamics of market concentration.

How are technological waves and market concentration connected? A potential
channel is through the allocation of ideas. Since firm size is to a large extent impacted
by firm productivity and new ideas are important sources of productivity growth,
where new ideas contribute their value will determine the firm size distribution, and
therefore, market concentration. Combining the Longitudinal Business Database (LBD)
from the Census Bureau and the patent information from the USPTO, this paper tracks the
affiliation of patents at their formation. It is shown that at the peaks of the technological
waves, a larger share of patents are forming in new businesses, while at the troughs,
a larger share of patents come from incumbent firms. Besides, among patents from
incumbent firms, there is a positive relationship between patent citations, a quality
measure of the ideas behind them, and the size of the firm. These patterns indicate that
technological waves affect the number of firm entries and the way new ideas combine
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with firms of different sizes.
Further patent-level regression analysis reveals that incumbent firm size positively

affects the private economic value of patents, given their scientific value, indicating
synergy between inventors and incumbent firms. The scientific value of patents has
a positive impact on the economic value, while this impact decreases in the aggregate
technological novelty.

Based on the empirical findings, this paper proposes a theory about inventors’ choice
of where to contribute the value of their ideas, and how it connects the technological
waves and market concentration. The technological novelty level is assumed to be a
random aggregate shock capturing the random arrival of ground-breaking innovations
in a period. Each inventor is endowed with an idea of idiosyncratic quality. The inventor
needs to choose between forming a new firm of a random size with a partner or joining
an incumbent firm. In the case of the latter, she must also decide on the size of the
incumbent firm to join. It is frictional for an incumbent firm to adopt new technology
as in Greenwood and Yorukoglu (1997), and the friction increases in the aggregate
technological novelty. Hence, occurrence of groundbreaking technologies leads more
inventors to form startups. Inventors’ decisions directly impact firm-level innovation
intensity, technology improvement, and hence the firm size distribution. Simulation of
the calibrated model shows that the evolvement of the market concentration generated
by the technological waves captures 95.9% of the actual rising trend and has a correlation
of 0.910 with the actual detrended fluctuations.

The model in this paper includes three key elements: realization potential of ideas
under adoption frictions, commercialization synergy, and inventor-firm contracts. The
realization potential captures the economic value of innovation when an incumbent
firm, already utilizing existing technologies, incorporates new ideas into its production
processes. The imperfect substitution between the new idea and existing technologies
reduces the economic value of the idea, highlighting the adoption frictions. These
frictions intensify during peaks of technological waves, when new ideas diverge
further from existing technologies. Consequently, startups, free from these adoption
frictions, emerge as more attractive platforms for innovation. Commercialization synergy
pertains to the added value incumbent firms can provide through their production and
commercialization capacities, which startups typically lack. Larger firms offer more
synergy, especially to high-quality ideas. Inventor-firm contracts govern the collaboration
between inventors and firms, ultimately shaping the allocation of ideas. Given the risky
nature of R&D and the unobservable effort of inventors, these contracts are designed to
elicit optimal effort through a combination of equity and wages. Larger firms face more
severe incentive challenges due to exposure to greater shocks not related to innovation,
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which diminishes the effectiveness of equity as an incentive mechanism for R&D.
Inventors must consider the realization potential, synergy, and contract terms when

choosing between startups and incumbent firms. Startups, while free from adoption
friction and offering more aligned incentives, lack the capacity to generate synergy.
In contrast, incumbents face adoption friction, with larger firms providing weaker
incentives but better synergy. These trade-offs guide inventors in their strategic decision-
making regarding firm affiliation.

The model has two major predictions. First, a larger share of inventors choose to start
new firms to develop their ideas during periods of high technological novelty since the
realization potential at incumbent firms is lower. Second, among inventors that choose to
do R&D in incumbent firms, there is positive assortative matching between idea quality
and firm size. Therefore, firms already with a larger size attract ideas of higher value.
These two predictions are consistent with observations in data and collectively contribute
to a reduction in market concentration when the economy is closer to the peak of the
technological waves. The upsurge in new startups leads to a proliferation of firms in
the market. Besides, given that new startups are less affected by the positive matching
between idea quality and firm size, they offer a counterbalance to the tendency of larger
firms to further expand.

To quantify the impact of the technological novelty waves on market concentration
through allocation of new ideas, we calibrate the model and then conduct simulations
by changing the aggregate novelty of new technologies in an economy. The model is
calibrated to match the average data moments between 1982 and 2016. Key moments
include patent novelty, average patent value, degree of positive matching between patent
citation and firm size, the growth rates, etc. In the simulation exercise, we fix all the
parameters except for the one related to patent novelty for each year following 1986, the
first peak of the technological waves within our sample period. This variation captures
the evolving realization potential of ideas within incumbent firms. Subsequently, we
generate paths of two essential moments: (1) the ratio of the number of ideas in new
firms relative to those in incumbent firms; (2) the HHI of firm sales or employment. The
two paths are compared with the data.

The two simulated series closely mirror the empirical trends, with peaks and troughs
occurring almost simultaneously as the actual variations. Notably, the model-generated
HHI reproduces 95.9% of the observed upward trend. Moreover, the correlation between
the detrended simulated and actual HHI is 0.910, while the correlation between the
detrended simulated and actual ratio of ideas in new versus incumbent firms is 0.825.
These results demonstrate that technological waves are an important driving force behind
idea allocation and market concentration.
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To decompose the effect of the two channels, changes in firm numbers (extensive
margin) and the positive assortative matching (intensive margin) between idea quality
and firm size, on the evolvement of market concentration, we track the HHI change
driven by firm numbers in the simulation process. The decomposition shows that while
the extensive margin is the main driver of the rising trend in market concentration, the
intensive margin reacts more swiftly to technological waves, aligning the simulated
HHI’s response timing more closely with the data.

Related Literature
This paper is closely related to the literature on the interplay between innovation and
market concentration. On the one hand, innovation leads to technological advancement
that creates monopoly rents and larger firm size (Aghion and Howitt, 1990; Grossman and
Helpman, 1991; Klette and Kortum, 2004). On the other hand, firms of different sizes are
shown to have different innovation intensities in the literature, indicating that the overall
innovation intensity depends on both the firm size distribution (Akcigit and Kerr, 2018)
and the market for ideas (Eaton and Kortum, 1996; Silveira and Wright, 2010; Chatterjee
and Rossi-Hansberg, 2012; Cabral, 2018; Perla, Tonetti and Waugh, 2021; Fons-Rosen,
Roldan-Blanco and Schmitz, 2021). Theories and empirical evidence in this aspect can be
traced back to the Schumpeterian argument that large firms have a higher capacity to do
R&D, to more recent findings that small firms are more inclined to engage in innovation
activities due to the rise of the patent market (Cassiman and Veugelers, 2006; Bena and Li,
2014; Akcigit, Celik and Greenwood, 2016; Liu and Ma, 2021; Ma, 2022; Yang, 2023). Most
of the existing studies focus on the relationship between innovation efforts and market
structure (e.g., Cavenaile, Celik and Tian (2019)), while this paper finds new patterns
that the novelty of new technologies is closely correlated with the market concentration
measure. To our knowledge, this is the first paper that uncovers the relationship between
market concentration and the technological novelty waves.

Our empirical and theoretical analyses highlight the role of technological novelty
in shaping where inventors conduct R&D. This provides a fresh perspective on the link
between idea allocation and market concentration. Prior studies (e.g., Cunningham,
Ederer and Ma (2021); Akcigit and Goldschlag (2023)) emphasize that incumbent firms
strategically acquire and shelve external innovations to block competition, thereby
causing a decline in novelty. Our findings does not contradict these conclusions, but
suggest a complementary view. Specifically, this paper demonstrates that technological
novelty and market concentration mutually reinforce each other, amplifying the negative
correlation between technological waves and market concentration.

This paper offers a new explanation for the rise in U.S. market concentration since
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the late 1990s. Although this trend has coincided with gains in allocative efficiency
and productivity (Autor et al. (2020); Ganapati (2021)), it has also been accompanied
by declining firm entry and a growing gap between large and small firms (Akcigit and
Ates (2023); Olmstead-Rumsey (2019)), as well as increasing innovation difficulty (Bloom
et al. (2020)). We propose that a slowdown in radical technological breakthroughs helps
reconcile these observations. Our Novelty Index reveals that major waves of innovation
peaked in the mid-1980s and mid-1990s, with a prolonged 17-year lull until a resurgence
in the early 2010s. During this stagnation, inventors increasingly turned to incumbent
firms, enabling large incumbent firms to further expand and driving up concentration.

Finally, our analysis delves into the implications of the introduction of
groundbreaking technologies. Bowen III, Frésard and Hoberg (2023) show empirically
that in an era with rapid evolving technologies, more startups remain independent rather
than being sold out. Dinlersoz, Dogan and Zolas (2024) discover a surge in AI business
applications after 2016. Greenwood and Yorukoglu (1997) and Greenwood and Jovanovic
(1999) establish that technological revolutions lead to deterioration in the stock value
of existing firms. Jovanovic and Rousseau (2014) shows that at the advent of new
technologies, incumbent firms decrease investment due to lack of compatibility while
new firms increase investment. This paper extends the existing literature by investigating
how a leap in technological progress affects the distribution of firm sizes, primarily due
to the frictions when integrating inventors’ novel ideas into incumbent firms. It is shown
that market concentration is another important outcome of technological revolutions.
This paper demonstrates that apart from the high-frequency business cycle influenced
by productivity fluctuations (Kydland and Prescott (1982)), the economy may also be
susceptible to a low-frequency cycle driven by the waves of technological novelty.

The rest of the paper is organized as follows. Section 2 introduces measures of the
technological waves, market concentration, and the allocation of ideas, and subsequently
presents their patterns. Section 3 constructs a model where inventors make decisions
between initiating new ventures or joining established incumbents at specific sizes. We
derive predictions about the mapping between the quality of inventors’ ideas and their
optimal choices. Section 4 defines the balanced growth path, the aggregate growth rate,
and market concentration. Section 5 calibrates the model. Section 6 simulates the model
to evaluate the degree to which technological waves can account for changes in market
concentration through the idea allocation channel. Section 7 concludes.
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2 Empirical Patterns

This section exhibits empirical patterns of the technological waves, market concentration,
and a potential channel that links the two—the choices of the inventors on where to
develop their ideas.

2.1 Technological Waves

Technology waves capture the extent of new technology breakthroughs over time. At
the peak of the technological waves, significantly novel technologies emerge that are
often incompatible with existing technologies; at the trough of the waves, most of the
technologies in the economy have reached a mature state, and the improvement over
existing ones is incremental.

2.1.1 Measurement

To measure the technological waves, we create a Novelty Index of the new technologies
in each year using the patent citation data. Specifically,

Noveltyt =
∑i∈It ∑5

s=0 Forward Citationsi,t+s

∑i∈It ∑5
s=0 Forward Citationsi,t+s + ∑i∈It ∑5

s=0 Backward Citationsi,t−s
, (1)

where It is the set of the new patents granted in year t. The numerator is a summation
of the number of forward citations (citations by others) each new patent gets within the
next five years. The denominator is a summation of the number of forward citations
plus a summation of the number of backward citations (citation on others) each patent
makes on other patents granted within the previous five years. The five-year window is
to ensure every year in the sample is compared on the common ground, since more recent
patents are more likely to receive fewer forward citations due to the right-censoring issue.
The rationale for this measure is that groundbreaking innovations typically exhibit lower
similarity to current technologies, but pave the way for subsequent patents to emulate
them. Since the forward citations capture the overlap of future patents with the focal
patent, while the backward citations capture the overlap of the focal patents with previous
patents, the relative number of the former provides a measure of patent novelty. The
Novelty index is in the range between zero and one. A higher index indicates that the
year witnesses significant breakthroughs in new technologies; a lower index indicates
that most of the technologies have evolved into a mature stage in that year.

The data used to generate the Novelty Index comes from the USPTO patent and
citation data. The USPTO records all patents granted after 1976 and all the patents they
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cite. To get a smoother trend, we take a three-year average for each observation,1

Novelty_avgt =
1
3

1

∑
h=−1

Noveltyt+h. (2)

Alternative measures of patent novelty have also been proposed. Bowen III,
Frésard and Hoberg (2023) analyze the full text of U.S. patents and define a patent as
revolutionary if the vocabulary it employs is rapidly growing in usage across the overall
patent corpus. Their measure of novelty is referred to as “RETech.” Similarly, Kelly et al.
(2021) use textual analysis to assess patent importance based on its similarity to prior
work and its influence on subsequent innovations.

Figure 1 shows the technological waves defined in this paper and the “RETech” in the
literature.2 They are significantly positively correlated with nearly simultaneous peaks
and troughs, indicating the robustness of different measures. The figure suggests that
significant technological breakthroughs occurred in the mid-1980s, the mid-1990s, and
the beginning of the 2010s, with the third peak being lower. The period around 1990 and
the mid-2000s are periods when most of the technologies have entered a mature stage.
The Novelty index for different technology fields—the first digit of the International
Patent Classification (IPC) defined by the The World Intellectual Property Organization
(WIPO)—are shown in Figure 13 in Appendix B.2. There are both co-movements and
heterogeneity across different fields.3

The alignment between the technological waves identified by the citation-based
measure in this paper and those found through textual analysis in the literature
enhances the credibility of our newly developed measure. However, our measure may
underestimate the declining trend in technological novelty since the number of citations
generally increases at a faster pace over time, particularly after the 1980s. The citation-
based measure in this paper complements the text-based measure in the literature and
offers several advantages. First, it does not rely on the digitization quality of patent
abstracts, thereby avoiding issues of inaccuracy. Second, it is unaffected by strategic
language use in patent abstracts or changes in language over time. Third, its definition

1The smoother does not change the original pattern, as shown in figures without the smoothing
techniques in Appendix B.1

2The “RETech” defined by Bowen III, Frésard and Hoberg (2023) has a similar meaning to our measure.
Kelly et al. (2021) captures aggregate technology breakthroughs by counting the number of patents in the
top 10 percent of the unconditional distribution of their importance measure. Because this measure is
influenced by the total number of patents each year, its meaning differs from ours.

3The Novelty Index by field is defined in a similar way as the aggregate index, except that the patent set,
It, now includes only patents in the corresponding technology field. The nine fields are respectively human
necessities, performing operations and transportation, chemistry and metallurgy, textiles and paper, fixed
constructions, mechanical engineering; lighting; heating; weapons; blasting, physics, electricity.
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Figure 1: Two Measures of Technological Waves
Notes: This figure illustrates two measures of the technological waves. The blue solid curve, based on
the methodology defined in this paper, calculates the relative ratio of forward citations to the sum of
forward and backward citations, while the gray dashed curve represents the “RETech” index, a measure of
patent novelty from the literature, which assesses patent novelty by the prevalence of vocabularies that are
growing in use in the patent description. The two curves have different y-axises.
Sources: USPTO patent and citation data.

is more transparent and not constrained by computational resources. We anticipate that
this measure will be used more broadly to capture technological shifts over time.

2.1.2 Contributors to the Tech Waves

Which classes of technology contributed to the three peaks of the technological waves?
Who were the major applicants for breakthrough patents—incumbents, startups, or
public institutions?

To answer the first question, we decompose the Novelty Index into the contribution
of each three-digit IPC code using the following method,

Noveltyt = ∑
j∈J

∑i∈Ijt ∑5
s=0 Fij,t+s

∑i∈Ijt ∑5
s=0 Fij,t+s + ∑i∈Ijt ∑5

s=0 Bij,t−s

∑i∈Ijt ∑5
s=0 Fij,t+s + ∑i∈Ijt ∑5

s=0 Bij,t−s

∑i∈It ∑5
s=0 Fi,t+s + ∑i∈It ∑5

s=0 Bi,t−s
,

(3)

where J is the set of 3-digit IPC code and Ijt is the set of patents belonging to the IPC
code j granted in year t. Intuitively, the contribution of each technology class in a given
year is determined by the IPC-specific Novelty Index multiplied by the share of forward
and backward citations of that class. Table 1 lists the top three contributors at the three
peaks of the technological novelty waves. Medical or Veterinary Science and Hygiene
contribute most to the first peak, while Computing; Calculating or Counting is the leading
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contributor to the second and third peak.

Table 1: Major Contributors to the Technological Novelty Peaks

First Peak (1985-1987) Second Peak (1995-1997) Third Peak (2010-2012)
1 Medical or Vet. Sci.; Hygiene Computing; Calculating or Counting Computing; Calculating or Counting
2 Electric Elements Medical or Vet. Sci.; Hygiene Medical or Vet. Sci.; Hygiene
3 Measuring; Testing Electric Communication Technique Electric Communication Technique

Notes: This table shows the major technological classes of the top three fields with the highest Novelty index at the
technological novelty peaks in the period between 1981 and 2017.

To examine the second question, we draw on the “historically significant patents”
compiled by Kelly et al. (2021) from online sources. Our sample period includes 54
such breakthrough patents. To assess whether these patents meaningfully contribute to
aggregate novelty, we compute a patent-level Novelty Index using the same methodology
applied to the IPC-level index.4 We then rank each of the 54 patents within the
unconditional distribution of Novelty Index scores over the sample period. The mean
and median percentile ranks fall in the top 24% and top 7% of all patents, respectively,
indicating a strong concordance between Kelly et.al.’s list and our novelty measure. In
Figure 2, we categorize the applicants of these breakthrough patents by institution type.
The wide range of sources demonstrates that highly novel technologies emerge across
diverse organizational settings rather than from a single dominant sector.

Figure 2: Composition of Applicants of Breakthrough Patents
Notes: The pie chart illustrates the share of applicants from each institutional group for the 54 breakthrough
patents. Incumbents are defined as private firms that applied for a patent at least three years after their
founding. Startups are private firms that applied within their first three years or before. Others include
cases where the applicants are multiple institutions of different types.
Sources: The “historically significant patents” complied by Kelly et al. (2021).

4Namely,

Noveltyt = ∑
i∈It

∑5
s=0 Fi,t+s

∑i∈It ∑5
s=0 Fi,t+s

× ∑5
s=0 Fi,t+s

∑i∈It ∑5
s=0 Fi,t+s + ∑i∈It ∑5

s=0 Bi,t−s
.
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2.1.3 Tech Waves in Europe

While this paper primarily focuses on analysis within the United States, we also calculate
the Novelty Index for several European countries with the highest patenting activity.
Figure 14 in Appendix B.3 illustrates the technological waves in six European countries
with the most patent issuances during the sample period, based on PATSTAT data. The
figure reveals a declining trend in technological novelty among all the six countries from
the 1980s through the 2010s.

2.2 Market Concentration

The Herfindahl-Hirschman Index (HHI), a widely adopted measure of market
concentration, serves as the primary metric. The analysis relies on two datasets:
Compustat Fundamentals Annual and the Census Bureau’s Longitudinal Business
Database (LBD). Compustat documents sales information for publicly listed U.S. firms.
We focus on industrial firms headquartered in the U.S. in Compustat. The LBD provides
employment and payroll data for all employer businesses in the U.S. The HHI is
constructed through several steps. First, in Compustat, the squared ratios of each firm’s
sales to total industry sales are calculated, defined by the 2-digit SIC code, for each year.
In the LBD, the squared ratios of each firm’s employment or payroll to the total industry
employment or payroll are computed within each industry, defined by the 3-digit NAICS
code, for each year. These squared ratios are then summed across firms in each industry
to derive the annual industry-level HHIs. Each industry is weighted by its total sales (for
Compustat) or total employment (for the LBD), and a weighted average across industries
is computed. To smooth the trend, a three-year average is applied to each observation.5

Panel A of Figure 3 displays the annual Herfindahl-Hirschman Index (HHI) for firm
sales, employment, and payroll, all of which exhibit similar trends and fluctuations. The
pairwise correlations among these measures are high: 0.86 between sales and payroll,
0.88 between sales and employment, and 0.99 between employment and payroll. Panel B
illustrates the relationship between market concentration, measured by sales-based HHI,
and the technological waves defined in the previous section. The two series are negatively
correlated. The technological waves exhibit a downward linear trend, while the HHI
shows an upward trend. The cross-correlation between the detrended HHI (xt) and the
detrended technological waves (yt+k) reaches its maximum absolute value of −0.770 at
k = −2. This suggests that changes in market concentration closely follow technological

5Figure 11 in Appendix B.1 shows the patterns of HHI (based on sales in Compustat) and the Novelty
Index without smoothing. Their correlation is similar to the smoothed version.
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waves with a lag of approximately two years.6

To assess the robustness of market concentration patterns, the share of sales by top
firms is calculated using the cleaned data series from Kwon, Ma and Zimmermann (2023),
which is based on IRS data covering the entire population of U.S. corporations. Figure 15
in Appendix B.5 shows that the HHI exhibits similar upward trends and cyclical patterns
to the top sales shares.

Panel A: Market Concentration
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Figure 3: Technological Waves and Market Concentration
Notes: Panel A displays the annual HHI for sales (red solid curve), employment (blue dash curve), and
payroll (purple dash-dot curve). The first is based on Compustat data, while the last two are derived
from the LBD dataset from the Census. Panel B illustrates the technological waves alongside the trend of
market concentration over time. The blue dashed curve, following the methodology defined in this paper,
represents the relative ratio of forward citations to the sum of forward and backward citations. The red solid
curve shows the HHI for sales. Each panel uses distinct y-axes, shown on the left and right, respectively.
Sources: Longitudinal Business Database (LBD), Compustat Fundamental Annuals, and USPTO patent data.

The negative correlation between technological waves and market concentration is
evident across most major sectors, including mining and construction, manufacturing,
transportation and utilities, wholesale and retail trade, and finance. By-sector graphs
illustrating this relationship are presented in Figure 16 in Appendix B.6. A more granular
analysis is conducted using regression analysis, as specified in Equation (4):

HHIst =β0Novelty Indexst + β1Sizest + θs + µt + ϵst. (4)

The Herfindahl-Hirschman Index (HHI) at the 4-digit SIC industry level is regressed on
the Novelty Index, controlling for total industry size, as well as industry and year fixed
effects. The Novelty Index, calculated at the 4-digit IPC level, is mapped to the 4-digit
SIC level using the concordance developed by Silverman (2002), which links IPC and SIC

6Cross-correlations for k ∈ {−3,−2,−1, 0, 1, 2, 3} are reported in Table 10 in Appendix B.4. The strongest
correlation, in absolute value, occurs at k = −2. Similar results are obtained when using employment or
payroll to measure market concentration.
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codes based on patent usage. Results based on sales HHI using Compustat are presented
in Table 2, with similar findings for payroll HHI using Census data shown in Table 11 in
Appendix B.7. In columns (1)–(4), the regressor is the Novelty Index for the concurrent
year, while in columns (5)–(8), it is the Novelty Index lagged by two years. Columns
(1) and (5) include no fixed effects, capturing the aggregate correlation. Columns (2)
and (6) control for industry fixed effects, highlighting the relationship within the same
industry across different years. Columns (3) and (7) incorporate year fixed effects,
capturing the cross-industry relationship within the same year. Finally, columns (4) and
(8) control for both industry and year fixed effects, isolating within-industry and within-
year variations. Across all specifications, we observe a significant negative relationship,
with the coefficient being larger in absolute terms when using the Novelty Index lagged
by two years. These findings confirm the robustness of the negative relationship, even
when accounting for business cycle factors at the industry or year level.

Table 2: Relationship between HHI and Novelty Index at the 4-digit SIC code

HHI
(1) (2) (3) (4) (5) (6) (7) (8)

Novelty Index -0.491*** -0.432*** -0.215*** -0.0678*
(0.0242) (0.0178) (0.0546) (0.0406)

Novelty Index(Lag 2 yrs) -0.639*** -0.556*** -0.285*** -0.150***
(0.0348) (0.0257) (0.0554) (0.0411)

Industry Sales -0.0566*** -0.0243*** -0.0635*** -0.0481*** -0.0556*** -0.0200*** -0.0630*** -0.0468***
(0.00114) (0.00177) (0.00115) (0.00188) (0.00119) (0.00190) (0.00119) (0.00199)

Industry Fixed Effect N Y N Y N Y N Y
Year Fixed Effect N N Y Y N N Y Y

Observations 10,333 10,331 10,333 10,331 9,780 9,780 9,780 9,780
R-squared 0.205 0.613 0.256 0.660 0.196 0.614 0.252 0.667

Notes: Standard errors are clustered at the industry and year level. The HHI and industry size are measured
by sales in Compustat. Columns (1) and (5) include no fixed effects. Columns (2) and (6) incorporate
industry fixed effects. Columns (3) and (7) incorporate year fixed effects. Columns (4) and (8) include both
industry and year fixed effects. *** Significant at the 1 percent level; ** Significant at the 5 percent level; *
Significant at the 10 percent level.

The negative correlation between technological waves and market concentration is
also evident in Europe, as shown by the declining trend of the Novelty Index in Appendix
B.3 and the increasing market concentration across European countries, as measured by
the Herfindahl-Hirschman Index (HHI) and top sales share in recent studies (e.g., Bighelli
et al. (2023) and Ma, Zhang and Zimmermann (2024)).

2.3 Allocation of Ideas

One potential link between the technological waves and the market concentration is
inventors’ choices of where to do innovation. They can work independently and start
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their own businesses or contribute their innovation efforts to incumbent firms. In the
latter case, they also choose the size of incumbent firms to work in. This section describes
the flow of the new ideas using the Census and Compustat data.

2.3.1 Entrants or Incumbent Firms

Information on the affiliations of inventors at the outset of research projects is not directly
available. However, affiliation can be inferred by observing the age of the firm to which
a patent is granted or by which it is applied. Specifically, when a patent is granted to a
firm aged zero to five years, it indicates that the initial idea was developed in a startup
five years earlier. In contrast, when a patent is granted to a firm older than five years, it
implies that the idea was developed internally by an incumbent firm. A five-year window
is adopted based on estimates from the USPTO, which suggest that the average time
between patent application and issuance is around two to three years. It is also assumed
that the completion of a research project takes a similar amount of time. Based on these
assumptions, the ratio between the number of ideas in new firms to the number of ideas
absorbed in incumbent firms is captured by the following ratio:

New-to-Incumbent Ratiot =
∑i∈It+5

Granted in Firm(Age ≤ 5)i,t+5

∑i∈It+5
Granted in Firm(Age>5)i,t+5

, (5)

where It+5 denotes the set of patents granted five years after time t, and the variables
“Granted in Firm(Age≤5)” and “Granted in Firm(Age>5)” indicate whether patent i was
granted to a firm aged five years or less, or older than five years, respectively.

To mitigate potential biases introduced by patent transactions prior to issuance, an
alternative measure is constructed based on the age of the firm at the time of patent
application. If a patent is applied for in a firm aged zero to three years, it is interpreted as
evidence that the firm was recently founded around the underlying idea. Otherwise, the
idea is attributed to an incumbent firm. The alternative ratio is defined as follows:

New-to-Incumbent Ratiot =
∑i∈It+3

Applied in Firm(Age ≤ 3)i,t+3

∑i∈It+3
Applied in Firm(Age>3)i,t+3

, (6)

where the variables are defined analogously.
The data used to observe patent affiliations is constructed by combining the

Longitudinal Business Database (LBD) from the US Census Bureau and the USPTO patent
data. The combined dataset can track the age of firms at patent application and issuance.

Since the two measures of the New-to-Incumbent Ratio exhibit highly similar
patterns, only the first measure is reported. As in previous analyses, a three-year moving
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average is applied to smooth the time series, and the resulting trend is shown in Figure 4.7

For comparison, the Novelty Index introduced earlier in this paper is also plotted. The
New-to-Incumbent Ratio exhibits pronounced cyclicality, with its peaks and troughs
closely aligned with those of the technological novelty waves. In addition to this cyclical
pattern, a declining trend is observed in both series over time. The cross-correlation
between the detrended New-to-Incumbent Ratio (xt) and the detrended Novelty Index
(yt+k) is computed across different time lags. The maximum absolute correlation, 0.612,
occurs at k = 0, indicating that the two series move in tandem contemporaneously.
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Figure 4: Technological Waves and Idea Allocation

Notes: This figure shows the technological waves and the idea allocation between new and incumbent firms
over time. The blue dashed curve, based on the methodology defined in this paper, calculates the relative
ratio of forward citations to the sum of forward and backward citations. The green solid curve displays the
“New-to-Incumbent Ratio” defined in the paper, capture where new ideas contribute their value. The two
curves have different y-axises, which are shown respective on the left and right.
Sources: Longitudinal Business Database (LBD) and USPTO patent and citation data.

2.3.2 Granular Relationship between Tech Waves and the New-to-Incumbent Ratio

The positive correlation between technological waves and the New-to-Incumbent Ratio is
evident across most major technological fields, including human necessities, performing
operations, chemistry, textiles, fixed constructions, physics, and electricity. Graphs by
field illustrating this relationship are presented in Figure 17 in Appendix B.8. Analysis at
a more granular level is conducted using regression, as specified in Equation (7):

New Firm Sharest =β0Novelty Indexst + β1Patent Numberst + θs + µt + ϵst. (7)

7Figure 12 in Appendix B.1 presents the unsmoothed series for both the New-to-Incumbent Ratio and
the Novelty Index, which display a similar correlation structure to their smoothed counterparts.
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The share of new firms among all patenting firms at the 4-digit IPC-by-year level
(New Firm Share) is regressed on the Novelty Index, controlling for the total number of
patents within each IPC, as well as IPC and year fixed effects. The New Firm Share is
a transformed version of the New-to-Incumbent Ratio, defined as New-to-Incumbent Ratio

New-to-Incumbent Ratio+1 .
The regression results are reported in Table 3. Column (1) includes no fixed effects and
captures the aggregate correlation. Column (2) adds 4-digit IPC fixed effects, allowing
the relationship to be identified within technological fields over time. Column (3)
includes year fixed effects, capturing variation across IPCs in a given year. Column
(4) incorporates both IPC and year fixed effects, isolating within-field and within-year
variation. Across all specifications, a significant positive relationship is found, indicating
that the association remains robust even after accounting for business cycle fluctuations
at the IPC or year level.

Table 3: New Firm Share and Novelty Index Relationship at the 4-digit IPC Level

Share of New Firms
(1) (2) (3) (4)

Novelty Index 0.0281*** 0.0243*** 0.0238*** 0.0175***
(0.00555) (0.00558) (0.00590) (0.00597)

Ln(Patent Number) -0.00258*** -0.00385*** -0.00245*** -0.00309**
(0.000454) (0.00146) (0.000458) (0.00156)

4-digit-IPC fixed effect NO YES NO YES
Year fixed effect NO NO YES YES

Observations 20,000 20,000 20,000 20,000
R-squared 0.003 0.160 0.006 0.164

Notes: Standard errors are clustered at the 4-digit IPC level. Columns (1) includes no fixed effects. Columns
(2) incorporates IPC fixed effects. Columns (3) incorporates year fixed effects. Columns (4) include both IPC
and year fixed effects. To comply with Census Bureau disclosure requirements, the number of observations
is rounded to the nearest thousand. *** Significant at the 1 percent level; ** Significant at the 5 percent level;
* Significant at the 10 percent level.

2.3.3 Size of Incumbent Firms

When inventors opt to contribute their ideas to incumbent firms, they are also making
a choice regarding the size of the firm, as it impacts the potential economic value that
their innovations can attain. We establish a connection between the quality of inventors’
ideas and the size of the incumbent firms they select by examining a subset of patents that
have been granted to firms with a history of at least five years in operation. This subset
serves as the denominator for calculating the “New-to-Incumbent Ratio,” as described
in Section 2.3.1. Idea quality is proxied by the number of forward citations each patent
receives within five years of issuance. Patents issued to both new and incumbent firms
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across various years are pooled, and citation quartiles are computed to categorize patents
into four groups based on their relative citation counts. For patents granted to incumbent
firms, the average firm size—measured by the number of employees—is then calculated
within each citation quartile. The average firm size for the lowest citation quartile is
normalized to one, and the relative firm size across quartiles is plotted in Figure 5.

The figure reveals a pattern of positive assortative matching between idea quality
and firm size: higher-quality ideas tend to be matched with larger firms. One potential
concern is that the firm’s employment at the time of patent issuance may not reflect its size
when the inventor originally selected the firm. To address this, we track firm employment
five years prior to the patent issuance using data from the Longitudinal Business Database
(LBD). The relationship between relative firm size and patent citation quartiles remains
consistent when firm size is measured in this earlier period, closely mirroring the pattern
shown in Figure 5.8

To check whether the positive relationship between idea quality and firm size
exists for new firms, we calculate the average size of firms the patents in each quartile
are granted to if they are granted to new firms—firms with less than five years of
operation. The results show that average firm size remains relatively constant across
quartiles, suggesting positive assortative matching only holds when ideas are contributed
to incumbent firms.
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Figure 5: Mapping between Patent Citations and Incumbent Firm Size

Notes: This figure shows the mapping between inventors’ idea quality and firm size if inventors opt to
develop their ideas in incumbent firms. The idea quality is measured by the number of patent citations
and is classified into four quartiles. The firm size is measured by the number of employees. The average
employment of firms corresponding to the first citation quartile is normalized to be one.
Sources: Longitudinal Business Database (LBD) and USPTO patent and citation data.

8The figure using firm employment from five years prior is available upon request.
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2.4 Economic Value of Patents over Tech Waves

To explore the underlying channels driving the co-movement between technological
waves and the allocation of ideas, as well as the positive assortative matching between
idea quality and firm size, we perform patent-level regressions. We use an extended
version of the sample constructed by Kogan et al. (2017), which includes more recent
years. Kogan et al. (2017) leverages the stock market’s response to patent news to estimate
the private economic value of patents. Since the sample encompasses all patents granted
to publicly listed firms in the US, it provides valuable insights into factors affecting the
economic value of patents in incumbent firms over technological waves. The following
regression analysis is conducted,

ln(economic valueijst) =b ln(Firm sizejst) + ι ln(1 + Citationsijst)+

ϕNoveltyt × ln(1 + Citationsijst) + µt + θst + γjt + ϵijst.
(8)

where i, j, s, and t are indexes for patents, firms, patent technology classes at the first-
digit IPC level, and years. The dependent variable corresponds to the economic value
of the patents. Firm size is measured by either the employment or sales of the firm to
which the patent belongs. The number of citations is used to measure the scientific value
of patents, serving as a proxy for idea quality. The interaction term between the Novelty
Index and the citations captures the impact of technological waves on the relationship
between the scientific and economic value of patents. The model controls for year-fixed
effects, year-by-patent technology class fixed effects, and year-by-firm fixed effects.

Table 4 presents the results using firm employment as the measure of firm size.
Similar regression results using firm sales as the measure of firm size are provided in
Appendix B.9. Columns (1) and (2) exclude the technological wave measure, focusing
solely on the properties of patents and firms. Columns (3) and (4) display results of
Equation (8). In Columns (5) and (6), the yearly Novelty Index is replaced by the year-by-
IPC Novelty Index.

Firm size has a significantly positive effect on the economic value of patents, given
the idea quality. This suggests that the synergy between inventors and firms increases
with firm size. Additionally, idea quality positively impacts the economic value of
patents, but this impact diminishes with higher aggregate technological novelty, as
indicated by the negative coefficients of the interaction terms. This finding highlights
the adoption frictions of novel technologies on existing product lines.
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Table 4: Factors of Patent’s Economic Value for Incumbent Firms

Ln(Patent’s Economic Value)
(1) (2) (3) (4) (5) (6)

Ln(1+Employment) 0.330*** 0.330*** 0.330***
(0.0262) (0.0262) (0.0262)

Ln(1+Citations) 0.0732*** 0.00277*** 0.285*** 0.0131** 0.231** 0.0115**
(0.00561) (0.000576) (0.0730) (0.00574) (0.0907) (0.00501)

Ln(1+Citations)×Noveltyt -0.390*** -0.0190*
(0.135) (0.0107)

Ln(1+Citations)×Noveltyst -0.291* -0.0162*
(0.162) (0.00909)

Year Fixed Effect Y Y Y Y Y Y
Year×IPC Fixed Effect Y Y Y Y Y Y
Year×Firm Fixed Effect N Y N Y N Y

Observations 1,111,737 1,101,355 1,111,737 1,101,355 1,111,633 1,101,250
R-squared 0.295 0.882 0.295 0.882 0.295 0.882

Notes: Standard errors are clustered at the year level. Columns (1)-(2) exclude the technological wave
measure and focus solely on the property of the patents and firms. Columns (3)-(4) show coefficients of
the regression equation (8). Columns (5)-(6) replace the yearly Novelty Index by the year-by-IPC Novelty
Index. The regressions control for year fixed effects and year by patent technology class fixed effects across
all specifications. The year by firm fixed effects are controlled in columns (2), (4), and (6). *** Significant at
the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

3 Model

To clarify the mechanism through which technological waves influence market
concentration, we develop a general equilibrium model featuring two groups of
individuals (households and inventors) and two types of firms (intermediate goods
producers and final goods producers). In this economy, there is an aggregate shock
capturing the novelty of new technologies in each period. This shock determines the
extent of friction when inventors’ ideas combine with incumbent intermediate good
producers. Inventors in each period receive ideas of idiosyncratic quality. They choose
to start up new intermediate-good-producing firms or join incumbent ones of selected
size based on the aggregate shock and their idea quality. The model abstracts from direct
productivity shocks—these could be added if aggregate growth effects were the aim—to
keep the spotlight on concentration dynamics.

3.1 Preferences

There is a long-lived representative household in the economy. She works in the
production sector, supplies one unit of labor to firms inelastically, and consumes final
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goods. She also owns all the firms in the economy. The household’s utility function is

UH =
∫ ∞

0
e−ρtlog(CH(t))dt, (9)

where ρ > 0 is the discount rate and CH(t) is the consumption of the household.
Inventors are the ones who work in the R&D sector. In each period, there is a

continuum of inventors of measure one. An inventor, with a short-lived lifespan of dt
time periods, dedicates effort eI to create innovations within either an incumbent firm or
a new business. Simultaneously, they engage in consumption. Inventors are risk-averse
and have a mean-variance utility:

UI (cI , eI) = E (cI)− A
var (cI)

q̄
− R (eI) q̄, (10)

where cI is the consumption, eI is the effort level, and R (eI) q̄ is the associated cost.
q̄ (defined below) is the average quality in the economy. The variance and cost are
normalized by q̄ to keep the problem stable over time. Denote the inventors’ aggregate
consumption using CI , i.e., CI =

∫ 1
0 cIidi.

3.2 Technology

The economy features two types of firms: intermediate goods producers and final goods
producers. The setup is similar to Akcigit and Kerr (2018). Both types of firms are
owned by the household. The former hires inventors to create innovations, and produce
intermediate goods. The latter assembles intermediate goods and produces final goods.

The final good producers produce final goods using a continuum of intermediate
goods j ∈ [0, NF]:

Y(t) =
1

1 − β

∫ NF

0
qβ

j (t)y
1−β
j (t)dj. (11)

In this function, qj(t) is the quality of the intermediate good j, and yj(t) is its quantity. We
normalize the price of the final good to be one in every period. The final good producers
are perfectly competitive, taking the input prices as given. Henceforth, we will drop the
time index t when it does not cause confusion.

The final goods are consumed by the household and inventors. The resource
constraint of the economy is:

Y = CH + CI . (12)

The intermediate goods producers are a continuum of risk neutral firms of measure
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NF. Each firm produces one type of good, with a linear technology using only labor:

yj = q̄lj, (13)

where lj is the labor input; q̄ = 1
NF

∫ NF
0 qjdj is the average quality, meaning that

improvement in qj has positive externality (Romer, 1986). The cost is linear in wage w,
which intermediate firms take as given. The labor market satisfies the constraint:

∫ NF

0
ljdj ≤ 1. (14)

The production technologies, together with the market setting on innovation, ensure
that an intermediate good producer’s value V(qj) is linear in quality qj (the proof is shown
in the next section),

V(qj) = νqj, (15)

where ν is endogenous.
This paper focuses on the balanced growth path. We normalize the variables using

the average quality q̄, and denote the normalized variables using tilde:

q̃j ≡
qj

q̄
, Q̃ ≡ Q

q̄
, Ṽ (q̃) ≡

V
(
qj
)

q̄
= νq̃j, (16)

where Q ≡
∫ NF

0 qjdj is the aggregate technology level of the economy.
Within a given period, intermediate firms consist of a combination of established

incumbents and new entrants. Incumbents hire inventors to improve their quality
through innovations, while new entrants arise as a result of successful innovations by
inventors collaborating with a partner. These innovations are generated by inventors
exerting effort denoted as eI . Given the level of effort eI , the success rate of an innovation
follows an instantaneous Poisson flow rate:

λ(eI) = λ0eI . (17)

It is costly for inventors to dedicate effort, and the flow cost of choosing effort eI is R (eI) q̄,
and R (eI) =

1
1+δ eδ+1

I dt. This implies a linear cost in time dt at a rate of 1
1+δ eδ+1

I , which is
an increasing and convex function of the effort taken.9

Inventors are directly responsible for the cost of their efforts, but their efforts cannot

9The innovation production function and the cost functions are based on the growth theory literature
(Romer, 1990; Klette and Kortum, 2004; Akcigit and Kerr, 2018). In the calibration, we choose δ = 1
following the literature.
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be observed by the partner or incumbent intermediate firms. In the absence of a
performance-based incentive, an inventor, receiving a flat wage, would opt for eI = 0.
Consequently, the partner and the incumbent firms must incentivize inventors to take
effort by implementing an innovation-dependent payment scheme. This paper adopts
the assumption that firms utilize a common contract, which is a combination of wage and
equity, to compensate inventors. The wage allows the partner and the firms to share risk
with an inventor whereas equity aligns the inventor’s interests with theirs.

Each inventor is born with one innovative idea characterized by an idea quality z0.
The inventor can choose to work either within an incumbent intermediate firm or start up
a new intermediate firm with a partner. In the case of launching a startup, the inventor
retains full control over the innovation process, and the economic value of the innovation
is solely determined by the idea quality z0. Following creation, the normalized economic
value, z̃, is a stochastic draw from a uniform distribution, U ((1 − ϕ) z0ν, (1 + ϕ) z0ν).
While, on average, a higher-quality idea yields a better outcome, the inclusion of ϕ allows
for some randomness in the mapping between the economic value of the innovation and
the idea quality, with ϕ ∈ (0, 1) capturing this variability.

In the alternative case where an inventor with idea quality z0 chooses to work within
an incumbent firm of quality q̃, the resulting economic value, x̃(z0, q̃), is a stochastic
variable drawn from a uniform distribution:

U ((1 − ϕ)x0(z0, q̃)ν, (1 + ϕ)x0(z0, q̃)ν) ,

where the mean innovation value x0(z0, q̃) depends positively on both idea quality and
firm size, i.e.,

∂x0(z0, q̃)
∂z0

> 0 and
∂x0(z0, q̃)

∂q̃
> 0.

The function x0(z0, q̃) takes the form:

x0(z0, q̃) = χ(q̃)γ(z0) =

(
q̃
q̃0

)b (
Bη + zη

0
) 1

η , η < 0.

The first term,
(

q̃
q̃0

)b
, captures the synergistic benefits provided by the incumbent

firm, with synergy increasing in firm quality. The second term,
(

Bη + zη
0
) 1

η with η < 0, is a
constant-elasticity-of-substitution(CES) production function representing the interaction
between the inventor’s idea and existing technologies. The parameter B denotes the stock
of backward citations, serving as a proxy for the maturity of the existing technology base.

The CES structure implies complementarity between the new idea z0 and the
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technological stock B, meaning that the new idea cannot fully substitute for existing
product lines within incumbent firms. Consequently, the realized innovation value is
typically lower than if the idea were implemented in a startup, reflecting frictions in
adopting and integrating new technologies.

The value of B evolves over time and is calibrated by matching the average B
B+z0

to
1 − Novelty Index. When the economy approaches the peak of a technological wave, the
stock of relevant previous innovations is lower, resulting in a smaller calibrated value
of B. Due to the complementarity between new and existing technologies, outdated
product lines within incumbent firms diminish the contribution of new ideas more. As
a result, during such periods, ideas implemented within incumbent firms tend to have
lower realized values, reflecting heightened adoption frictions of innovations.

3.3 Timeline

Upon an inventor’s birth, she observes the quality z0 of her idea. A potential partner
observe z0 and extends contracts to the inventor to jointly start a new intermediate firm.
Concurrently, incumbent firms observe their corresponding x0 (z0, q̃) and also extend
employment contracts to the inventor. The contracts from the potential partner and
incumbent firms are strategically designed to maximize their payoff, taking into account
the competition with other firms, as well as the inventor’s incentive problem. They
possess two key components: a fixed wage T̃ and a stake in equity a ∈ [0, 1].10 After
viewing all contracts, the inventor decides to either join her preferred incumbent firm of
quality q̃∗ (z0), or initiates a startup with the partner. In both cases, the matching process
is frictional. When the inventor chooses to innovate in an incumbent firm, she joins the
firm with the optimal size with probability h; alternatively, she is randomly assigned to
another incumbent firm q̃, based on the incumbent firm size distribution F̃ (q̃). Similarly,
when the inventor prefers to start a new business, she initiates it with probability hs; with
probability 1 − hs, the inventor is randomly assigned to an incumbent firm. The frictions
in the matching process are introduced to match the data, since the actual mapping
between idea quality and firm size is not perfect. After signing the contract, the inventor
chooses an R&D effort, eI .

3.4 Entry and Exit

A new intermediate firm enters the market upon successful innovation of an inventor
who choose to work with a partner. Upon entry, the firm first draws a quality q̃ from

10It is worth noting that the level of effort eI is unobservable and unverifiable. Consequently, contracts
cannot be contingent on the effort level.
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the current incumbent firm size distribution F̃(q̃). Subsequently, the entrant incurs a cost
equivalent to the firm value associated with the drawn quality q̃. Following this, the firm
applies the innovation, enhancing its quality by incorporating the value of the innovation
itself. The rate at which new intermediate firms enter is represented by λI .

Intermediate firms face an exogenous exit rate τ, which is independent of their size
and is a risk unrelated to innovation. We focus on a balanced growth path such that the
number of entrants equals the number of firm exits,

τN f = λI . (18)

4 Equilibrium: Balanced Growth Path

This section characterizes the equilibrium of the economy in which aggregate variables
(Y, C, R, w, q̄) grow at a constant rate g.

4.1 Production

The final good producer chooses {yj}j to maximize its profit using the technology
described in Section 3.2, which yields the demand function faced by intermediate goods
producers: pj = qβ

j y−β
j . The intermediate good producers engage in monopolistic

competition.11 Their FOC yields,

yj = qj

(
q̄ (1 − β)

w

) 1
β

, lj = yj/q̄, pj =
w

q̄ (1 − β)
. (19)

In each period, the labor market clearing satisfies
∫ NF

0 ljdj = 1, which pins down the wage

w = Nβ
F (1 − β) q̄. (20)

Thus, both the production output yj and profit πj are linear in quality,

yj =
qj

NF
, πj =

βqj

N1−β
F

. (21)

We drop the subscript j from the firm-level variable when it does not cause confusion.
In this model, it is assumed that intermediate firms, responsible for hiring inventors to

11The profit maximization problem and the solution process of the final good and intermediate good
producers are shown in Section C.1 in the Appendix.
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create innovation, operate in an environment where the competition ensures that the
entire value from innovations is captured by inventors. The discounted value of being
a firm of quality q is, therefore, the same as the net present value in the case where no
innovation occurs. The value function of an intermediate firm q at time t is a linear
function of firm size q.

V(q, t) = νq. (22)

where ν = β

(r+τ)N1−β
F

. The proof is shown in Appendix C.

The value function is linear in its quality, q, and does not depend on time. This result
implies that for any firm, the value of the same quality improvement ∆q is the same. We
will use q to denote both firm quality and size in the following sections.

The aggregate production is linear in the average quality q̄. The resource constraint
of the economy is Y = CH +CI . The relationship between the growth rate, g, and the time
discount factor can be derived from the household’s maximization problem,

g =
Ẏ
Y

=
ĊH

CH
=

˙̄q
q̄
= r − ρ. (23)

4.2 Joining Incumbent Firms

Incumbent (intermediate) firms engage in competition to attract inventors by offering a
compensation package including equity a and wage T̃. The setup yields a principal-agent
problem, where the interests of the risk-neutral firms, who benefit from innovation, and
the risk-averse inventors, who dedicate effort to create innovations, are not aligned.

While firms derive value from the innovations, they are not able to monitor the effort
exerted by inventors. Consequently, firms aim to incentivize the inventors to invest effort
by offering equity, while concurrently share the risk with inventors through a fixed wage.

For an intermediate firm, the optimization problem is as follows:

max
a,T̃

(1 − a)
(
Ṽ (q̃) + λ0eI x0 (z0, q̃) νdt

)
− T̃

st eI = arg max
{

u
(
cI
(
a, q̃, T̃

)
, eI
)}

u
(
cI
(
a, q̃, T̃

)
, eI
)
≥ ū (z0)

(1 − a)
(
Ṽ (q̃) + λ0eI x0 (z0, q̃) νdt

)
− T̃ ≥ Ṽ (q̃)

(24)

In this problem, a firm q̃ chooses the optimal contract
{

a, T̃
}

for an inventor z0 to
maximize its own payoff while taking three constraints into consideration. The firm’s
expected payoff is equal to the expected firm value owned by the original shareholders
(all shareholders except the inventor), given by (1 − a)

(
Ṽ (q̃) + λ0eI x0 (z0, q̃) νdt

)
, minus
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the wage paid to the inventor T̃. Note that Ṽ(q̃) is the firm value prior to innovation,
which is subject to exogenous exit shocks.

The first constraint is the inventor’s incentive compatibility constraint, ensuring that
when the inventor is employed by the firm, her actions align with utility maximization.
Namely, when facing the firm-specific contract

{
a, T̃
}

, the inventor chooses an effort level
eI to maximize her expected utility, denoted as u

(
cI
(
a, q̃, T̃

)
, eI
)
. The second constraint

describes the inventor’s participation constraint, meaning the inventor prefers to accept
this firm’s employment offer over other alternatives. This condition implies that the
firm needs to offer the inventor a utility level surpassing her outside option ū (z0). The
outside option is endogenously determined within this model by the Betrand competition
among firms in the inventor market. Lastly, the third constraint is the firm’s participation
constraint, guaranteeing the firm will not be worse off by hiring one inventor.

Though firms all have the same optimization problem in Equation (24), their optimal
equity level a depends not only on the inventor’s idea quality z0, but also the firm size q̃.
Firm sizes affect the composition of the risk profile in an inventor’s utility function:

u
(
cI
(
a, q̃, T̃

)
, eI
)
= E

(
cI
(
a, q̃, T̃

))
− AVar

(
cI
(
a, q̃, T̃

))
− R (eI) .12 (25)

The consumption cI
(
a, q̃, T̃

)
includes two components—the flat wage and the stochastic

equity value, which is the product of the equity share and the sum of the original firm
value and the value of innovation, i.e.,

cI
(
a, q̃, T̃

)
= a

(
Ṽ (q̃) + x̃ (z0, q̃) ν1S

)
+ T̃

where S denotes the event that the inventor successfully creates an innovation. The
expected consumption is13

E (cI) = a
(
EṼ (q̃) + λ0eI x0 (z0, q̃) νdt

)
+ T̃,

and the associated variance is14

Var
(
cI
(
a, q̃, T̃

))
= a2

τq̃2ν2dt︸ ︷︷ ︸
Var(Ṽ(q̃))

+ λ0eIE
(

x̃ (z0, q̃)2
)

ν2dt︸ ︷︷ ︸
Var(innovation)

 .

The variance comes from two sources: non-innovation-related firm value and the R&D
12The utility and consumption have been normalized by the average firm quality, q̄.
13The derivation of the expectation is shown in Appendix C.
14The derivation of the variance is shown in Appendix C.
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process. Both terms increases in firm size q̃, but the former one increases in a faster speed,
implying that in larger firms, shocks unrelated to R&D are stronger. Hence, larger firms
are subject to larger incentive problems and the equity held by the inventor provides a
weaker incentive for R&D efforts. Upon reviewing all available contracts, an inventor
determines her preferred firm q̃.

4.3 Starting up a New Business

In additional to joining an incumbent firm, an inventor can also start her own business.
The inventor, who is risk-averse, works with a risk-neutral partner to share risk. Similarly,
the inventor faces a compensation scheme

(
a, T̃
)
. However, the inventor is in charge of

the research direction by herself. Hence, the innovation value is solely determined by
her idea quality z0. Upon successful innovation, the normalized economic value, z̃, is
a random draw from the distribution U ((1 − ϕ) z0ν, (1 + ϕ) z0ν). On average, a higher-
quality idea yields a better outcome.

The partner’s problem shares the same form as the incumbent firm’s (Equation (24)),
with q̃ = 0 and the average innovation value being z0 instead of x0 (z0, q̃). The partners
are assumed to get zero profit. The inventor decides her effort by maximizing her utility.15

4.4 Inventor’s Choice

Each inventor chooses between working in an incumbent firm (with h probability in the
firm with optimal size and 1 − h probability working in a firm of random size), and in a
startup (with hs probability starting up a new business and 1 − hs probability working in
an incumbent firm of random size). The inventor’s decision rule is:

u (z0) = max{hu (cI (z0, q̃∗) , eI (z0, q̃∗)) + (1 − h)
∫

q̃
u (cI (z0, q̃) , eI (z0, q̃)) f̃ (q̃) ,

hsu (cI (z0, 0) , eI (z0, 0)) + (1 − hs)
∫

q̃
u (cI (z0, q̃) , eI (z0, q̃)) f̃ (q̃)}.

(26)

where f̃ (q̃) is the firm size distribution endogenously determined in the equilibrium. The
inventor joins a startup when it offers a higher expected utility.

Section 4.4.1 uses a simplified model to show the inventor’s trade off in a closed form.
Section 4.4.2 studies the inventor-firm matching in the full model.

15The exposition of the problem of starting up a business is presented in Appendix Section C.7.
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4.4.1 A Closed-Form Example

This section presents a simplified version of the model that yields tractable analytical
results and helps illustrate the underlying intuition. Two additional assumptions are
introduced in this version: (1) the innovation value x̃ is drawn from a distribution
with mean x0 (z0, q̃) ν and second moment e−1

I x0 (z0, q̃)2 ν2, instead of from a uniform
distribution U ((1 − ϕ) x0 (z0, q̃) ν, (1 + ϕ) x0 (z0, q̃) ν); and (2) there are no matching
frictions, i.e., h = hs = 1. Under the first assumption, the variance of the inventor’s
consumption becomes

Var
(
cI
(
a, q̃, T̃

))
=

τq̃2ν2dt︸ ︷︷ ︸
VarṼ(q̃)

+ λ0

(
x0 (z0, q̃)2

)
ν2dt︸ ︷︷ ︸

Var(innovation)

 .

Innovation-related uncertainty no longer depends on the effort level.
The parameter δ in the effort cost function, R(eI), is assumed to take the value of 1,

consistent with empirical estimates in the literature (e.g., Akcigit and Kerr (2018)). Using
backward induction, firms anticipate that the inventor will chooses the following effort:

eI = λ0ax0 (z0, q̃) ν.

When an inventor holds a larger equity share, a, or when the potential value of her
innovation, x0 (z0, q̃), is higher, she is incentivized to exert greater effort. In both cases,
the marginal return to effort increases, making additional investment more rewarding.16

The firm’s problem in Equation 24 yields,

a∗ =
1

1 + 2 A
λ0
( τq̃2

λ0x0(z0,q̃)2 + 1)
(27)

The optimal equity level, a∗, decreases in the firm size q̃ when b < 1. This is because a∗

is determined jointly by two forces: the commercialization value x0 (z0, q̃), and the non-
innovation-related shock—the exit shock, τq̃2. The firm size q̃ affects both factors but in
opposite directions. Larger firms can provide the inventor with more synergy, leading to
a greater commercialization value. This raises the equity share of the inventor, since it
is more worthwhile to incentivize her effort. Meanwhile, larger firms face a higher exit
risk. A lower equity share will expose inventors less to risks unrelated to innovation. The
relationship between the equity a and the firm size q̃ depends on the relative strength of
the two channels. When b < 1, as found in the model calibration, the second channel

16The derivation of the contract solution is provided in Section C.2 of the Appendix.
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dominates. Therefore, larger firms optimally offer less equity to an inventor.
The optimal compensation scheme is (a∗, T̃∗), where the wage T̃∗ is determined by

the zero profit, due to Betrand competition.

T̃∗ = −a∗E
(
Ṽ (q̃)

)
+ (1 − a∗) λ0eI x0 (z0, q̃) νdt.

Upon reviewing all contracts, an inventor with idea quality z0 chooses the firm q̃ she
would like to work for. The first-order-condition yields

∂x0 (z0, q̃)
∂q̃

=
2Aτ

4Aτ
q̃

x0(z0,q̃) +
2Aλ0+λ2

0
q̃/x0(z0,q̃)

(28)

The left-hand-side element is the benefit of joining a larger firm—higher synergy and
hence better commercialization. The right-hand-side element is the cost—the inventor
gets a lower equity share when combining her idea with a firm with a higher risk
unrelated to innovation. The optimal firm size is

q̃∗ =

((
2Aλ0 + λ2

0
)
(γ (z0))

2b
2Aτq2b

0 (1 − 2b)

) 1
2−2b

.

Proposition 1. When b < 0.5, ∂q̃∗
∂z0

> 0.17

When b is low, the synergy does not grow unboundedly with firm size and the
balancing role of a lower equity share ensures the existence and uniqueness of a solution.
The model predicts that among incumbent firms, better-quality innovations are more
likely to be created in larger ones. The reasons are twofold. First, better ideas benefit more
from synergy. Second, they generate relatively greater innovation-related uncertainty,
making inventors less vulnerable to incentive problems.

Proposition 2. When B increases, i.e., technology becomes more mature, a larger share of
inventors opt for joining incumbent firms.18

The stock of technology reduces adoption frictions in incumbent firms but does not
affect the innovation utilization process in new businesses. As a result, when technology
becomes more mature, the economic value of innovations increases in incumbent firms
while remaining unchanged in new firms, making incumbents relatively more attractive.

17The proof is shown in Appendix C.
18The proof is shown in Appendix C.
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Proposition 3. When b <
min

(
z−η

0

)
min

(
z−η

0

)
+max(B−η)

, there exists a cutoff z̄0 (B), such that all inventors

with z0 < z̄0 (B) opt for incumbent firms.19

The effects of both incumbents’ adoption efficiency, γ(z0), and the synergy-adjusted
innovation value, x(z0, q̃), are driven by the underlying idea quality, z0. High-quality
ideas experience greater losses due to adoption frictions, but also benefit more from
synergies when implemented by incumbent firms. However, if the synergy gain does

not increase too sharply with firm size (b <
min

(
z−η

0

)
min

(
z−η

0

)
+max(B−η)

),then the adoption friction

dominates, and inventors with high-quality ideas are more likely to start new businesses.

4.4.2 The Full Model

This section describes the full model, when releasing the assumptions in the closed-form
example. A more detailed solution to the full model can be found in Section C.6 in the
Appendix. Similar as in the closed-form case, the incentive constraint implies that the
firm knows the optimal effort of the inventor,

eI = λ0ax0 (z0, q̃) ν − Aa2λ0E
(

x̃ (z0, q̃)2
)

ν2. (29)

Exerting one more unit of effort has three effects: a larger likelihood of successful
innovation, a greater disutility from the effort, and a larger variance of consumption. The
last effect does not show up in the closed-form case, where the inventor’s effort reduces
the variance of the innovation value. In the full model, an inventor strategically takes a
lower level of effort eI for any given contract.

The firm’s problem is described in Equation (24). When b is relatively low, the
synergy, x0 (z0, q̃), increases mildly with q̃. It holds numerically that the optimal stock
a decreases with firm size q̃. The optimal compensation scheme is (a, T̃), where T̃ is
determined by the zero profit condition of the Betrand competition: T̃ = −aṼ (q̃) +
(1 − a) λ0eI x0 (z0, q̃) νdt.

Given the contracts, the inventor chooses the optimal firm size q̃ by maximizing
her utility. In each firm, her optimal effort level is given in Equation (29). Larger
firms provide better commercialization but worse incentives due to lower equity. The
numerical solution shows that, among all inventors that choose to join incumbent firms,
those with better ideas prefer bigger firms.

However, due to frictions in the inventor-firm matching process, only a fraction h of
inventors are matched with their ideal incumbent firms; the remainder are assigned to

19The proof is shown in Appendix C.
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firms of random size. As a result, innovations within a firm consist of two components:
one arising from directed matches and the other from frictional matches.

The technological waves influence both the inventor-firm matching process and
inventors’ utility. At the peak, technologies tend to exhibit greater novelty, which in
turn amplifies adoption frictions. As a result, innovations become less valuable within
incumbent firms, and the synergy effect weakens due to a decline in γ(z0). Consequently,
inventors strategically shift toward smaller firms, as the relative advantages of larger
firms become less pronounced. At the same time, inventors working in incumbent firms
get a lower utility.

4.5 Entry and Exit

A firm enters the market when it successfully creates an innovation as a startup. The mass
of entry equals the mass of innovations in startups:

λI =
∫

z0∈{q̃∗=0}
hsλ0eI (z0, q̃ = 0)ψ (z0) dz0. (30)

When stationary, the mass of firms entering the market equals the mass exiting,

τN f = λI . (31)

4.6 Growth Rate

The growth is from a single source—innovation. The aggregate growth can be written as,

g =
q̄ (t + ∆t)− q̄ (t)

q̄ (t)∆t

=

∫
z0∈{z0|q̃∗>0}

(
hλ0eI (z0, q̃∗) x0 (z0, q̃∗) + (1 − h) λ0

∫
q̃ eI (z0, q̃) x0 (z0, q̃) f̃ (q̃) dq̃

)
dΨ (z0)

N f

+

∫
z0∈{z0|q̃∗=0}

(
hsλ0eI (z0, q̃∗ = 0) z0 + (1 − hs) λ0

∫
q̃ eI (z0, q̃) x0 (z0, q̃) f̃ (q̃) dq̃

)
dΨ (z0)

N f
.

(32)

4.7 Balanced Growth Path

We conclude this section by defining the Balanced Growth Path (BGP). The economy’s
total R&D expenditure, CI , is expressed as:
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CI =
∫

z0∈{z0|q̃∗>0}
ν

(
hλ0eI (z0, q̃∗) x0 (z0, q̃∗) + (1 − h) λ0

∫
q̃

eI (z0, q̃) x0 (z0, q̃) f̃ (q̃) dq̃
)

ψ (z0) dz0

+
∫

z0∈{z0|q̃∗=0}
ν

(
hsλ0eI (z0, q̃∗ = 0) z0 + (1 − hs) λ0

∫
q̃

eI (z0, q̃) x0 (z0, q̃) f̃ (q̃) dq̃
)

ψ (z0) dz0.

(33)
It captures all transfers made to inventors. Based on Equation (37), the equilibrium output
level Y is linear in q̄

Y =
1

1 − β
Nβ

F q̄. (34)

and the consumption level is
CH = Y − CI . (35)

Definition A balanced growth path of this economy for any combination of

(t, q) is the mapping between q and z0, the allocation
({

y∗j
}

j
, Y∗, C∗

I , C∗
H

)
the prices(

w∗, r∗,
{

p∗j
}

j

)
, the growth rate g∗, the entry rate λ∗

I , and the measure of firms N∗
F , such

that (1) for any j ∈ [0, 1], y∗j and p∗j satisfy Equation (19); (2) the wage w∗ satisfies Equation
(20); (3) the interest rate r∗ satisfies Equation (23); (4) the measure of the intermediate
producers N∗

F satisfies Equation (31); (5) the mapping between q and z0 is the solution of
Equation (26); (6) the entry rates λ∗

I satisfy Equation (30); (7) R&D spending C∗
I satisfies

Equation (33); (8) the aggregate output Y∗ satisfies Equation (34); (9) the aggregate
consumption C∗

H satisfies Equation (35); and (10) the steady-state growth rate g∗ satisfies
Equation (32).

5 Calibration

We calibrate the model to target the average US economy from 1982 to 2016. Patents are
used as a surrogate for innovations. An innovation’s idea quality, denoted by z0, and
the realized value, x (z in the context of a startup), correspond to the patent’s citation
(scientific importance) and the patent’s economic value, respectively. Additionally, we
assume that the idea quality z0 follows the Pareto distribution characterized by a scale
factor zm and a shape factor α.

5.1 Identification

Parameters in the model are categorized into two groups. The first group is calibrated
by a prior information from the aggregate statistics or the literature. The second group is
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calibrated by estimation from the micro-level data or through the model. Table 5 reports
the parameters in the first group, (ρ, β, τ, A, δ). The discount rate, ρ, is set to 0.02 to match
the average interest rate in the sample period. The production function quality share,
β, is 0.109, following Akcigit and Kerr (2018). The firm exit rate, τ, is 0.06, targeting
the average exit rate of firms above 5 years old during our sample period based on the
Business Dynamics Statistics (BDS).20 The risk aversion parameter, A, and the effort cost
elasticity, δ, are set to be 0.5 and 1, respectively, which are commonly used in the literature
(Hall and Van Reenen, 2000).

Table 5: Parameter Values from a Priori Information

Parameter Description Value Identification
ρ Discount rate 0.02 Interest Rate
β Production function quality share 0.109 Firm profitability
τ Exo. exit rate 0.06 BDS
A Risk aversion 0.5 Risk aversion
δ Effort cost elasticity 1 Effort cost elasticity

Notes: This table shows parameter values from the literature or direct estimation.

We calibrate the ten remaining parameters in the second group, (λ0, α, zm, ϕ,η, B, b,
q0, h, hs), using the minimum distance method, inspired by Lentz and Mortensen (2008).
The parameters, along with their corresponding moments are in Table 6.

Table 6: Parameters from the Minimum Distance Estimation

Para. Description Identification
λ0 Innovation arrival rate Growth rate
α Shape of idea quality distribution S.d.-to-mean ratio of patent citations
zm Scale of idea quality distribution Average economic value of innovations
ϕ Innovation value dispersion S.d.-to-mean ratio of economic value cond. on citations
η Elasticity of substitution MLE estimation
B Maturity of technology Technology Novelty index
b Exponent of the synergy function Regression coefficient of economic value on firm size
q0 Scale of the synergy function New-to-incumbent ratio
h Matching friction (incumbent) Firm size ratio by fourth-to-first-quartile of citations
hs Matching friction (startup) Citation ratio between new and incumbent firms

Notes: Parameters in this table are jointly calibrated to minimize the distance between the model and data
moments.

Growth Rate—Innovation is the sole driver of growth in this model. Consequently,
the scale parameter of the innovation arrival rate, λ0, plays a critical role in determining
the aggregate growth rate. A higher arrival rate shortens the average time between
innovations, thereby raising the overall growth rate. We calibrate λ0 so that the model’s

20The BDS data is compiled from the Longitudinal Business Database (LBD) by the Census Bureau.
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implied aggregate growth rate matches 2.75%, consistent with the average annual growth
rate observed in the U.S. economy between 1982 and 2016 after applying the HP filter.

The S.D.-to-Mean Ratio of Patent Citations—This ratio captures the dispersion in patent
citations observed in the data, which reflects the underlying dispersion in inventors’ idea
quality. The parameter α is the primary driver of this dispersion. Specifically, the standard
deviation-to-mean ratio of the idea distribution is given by 1√

α(α−2)
. Although the patents

recorded in the USPTO data represent only successful innovations—a selected subset of
all ideas—the dispersion in patent citations remains heavily influenced by α. We construct
the citation distribution by pooling all patents granted since 1976 and their corresponding
citations recorded by the USPTO, and compute the standard deviation-to-mean ratio,
which is approximately 2.784.

Average Innovation Value—The economic value of innovations is modeled as directly
contributing to firm value. In the model, the economic value, denoted by x (or z for
startups), is assumed to follow a uniform distribution with its mean determined by the
underlying idea quality, z0. Given α, the average scientific value of ideas is governed by
the scale parameter of the Pareto distribution, zm. Accordingly, zm is calibrated to match
the average economic value of patents. The estimation method proposed by Kogan et al.
(2017) is adopted, in which the stock market’s reaction to patent-related news is used
to infer patent value. An extended version of their dataset, provided by the authors, is
employed. It links patents issued to U.S. firms from 1926 to 2022 with stock returns from
CRSP and firm-level data from Compustat. Since the distribution of public firms differs
from that of the broader firm population, the statistical model developed by Yang (2023)
is applied to estimate the average patent value across all firms based on public firm data.
It is found that, on average, a patent is worth 0.0255 times the average firm value. The
parameter zm is then calibrated to replicate this value.

S.D.-to-Mean Ratio of Innovations’ economic Value Conditional on Citations—The
economic value of innovations is based on the scientific value of ideas but is also subject
to additional randomness. In the model, the degree of randomness is governed by the
parameter ϕ. Specifically, conditional on idea quality, the standard deviation-to-mean
ratio of the uniform distribution of innovation economic value is given by ϕ√

3
. Using the

same sample employed to calibrate zm, the standard deviation-to-mean ratio of patent
economic value is estimated while controlling for the number of patent citations. In the
data, this ratio is found to be approximately 0.416.

Elasticity of Substitution between past Knowledge Stock and New Ideas—In incumbent
firms, the economic value of innovation is determined by both the new idea and the
existing technologies. The new idea and the existing technologies are integrated using
a CES production function, governed by a parameter η in the model. In addition, there
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is some randomness in the realization of the economic value, allowing us to employ the
maximum likelihood estimation method to estimate the parameter. Appendix D specifies
the estimation details.

Technological Novelty Index—Technological novelty is defined as the ratio of total
forward citations to the sum of forward and backward citations for all patents granted
in a given year. In the model, the past technological stock, B, which enters the realization
potential of new ideas, γ(z0) = (zη

0 + Bη)1/η, corresponds to the stock of backward
citations, representing the maturity of the existing technological base. The value of B
is calibrated so that the model-generated average forward-to-backward citation ratio,
B/(B +

∫
z0 dΨ(z0)), matches 1 − the average Novelty Index between 1982 and 2016,

where
∫

z0 dΨ(z0) corresponds to the total forward citations of available ideas.21

Regression Coefficient of Innovations’ economic Value on Firm Size—The synergy
provided by incumbent firms is governed by two parameters: b, which determines the
elasticity of synergy with respect to firm size, and q̃0, which sets the scale. To identify b,
the innovation’s average economic value function is log-linearized as log (x0 (z0, q)) =

b log
(

q̃
q̃0

)
+ log (γ (z0)) + log (z0). This expression maps directly to the regression

specification in Equation (8) in Section 2.4. The coefficient on the firm size variable in
the regression identifies the value of b.

New-to-Incumbent Ratio—The scale parameter in the synergy function, q̃0, affects the
benefit of contributing an idea to an incumbent firm compared to initiating a new venture.
Therefore, it is related to inventors’ choice between incumbent firms and startups. We use
the “New-to-Incumbent Ratio” derived in Section 2.3.1 to calibrate q̃0.

Firm Size Ratio by Fourth-to-First Quartile of Patent Citations—The model predicts that
when inventors choose to join incumbent firms, the size of the firm they select should
increase with the quality of their ideas. However, this positive sorting is hindered by
matching frictions. Greater frictions weaken the relationship between idea quality and
firm size. To calibrate the degree of frictions, h, the model generates the average firm
size by patent citation quartiles, conditional on the patent being developed within an
incumbent firm. The ratio of firm size between the fourth and first quartiles is then
computed and matched to its empirical counterpart.

Citation Ratio Between New and Incumbent Firms—The model predicts the existence
of a threshold in idea quality above which inventors prefer founding startups over
joining incumbent firms. As a result, patents from startups should, on average, exhibit
higher scientific value than those from incumbents. However, frictions in the startup
decision, governed by hs, attenuate this effect. The patent citation ratio between new and

21The Novelty Index defined in Section 2.1 can be expressed as F
F+B , where F denotes all forward citations

in a given period. Thus, (B/(B +
∫

z0 dΨ(z0))) corresponds to B
B+F = 1 − F

B+F = 1 − the Novelty Index.
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incumbent firms captures this relationship and is used to calibrate hs.

5.2 Calibration Results

Table 7 reports the model-generated moments and their counterparts in the data. Overall,
the model matches the targeted moments closely. The resulting parameter values are
reported in Table 8.

Table 7: Moments

Identification Moment Data Model
Growth rate 0.0275 0.0290
S.d.-to-mean ratio of patent citations 2.784 2.659
Average innovation value 0.0255 0.0240
S.d.-to-mean ratio of innovation value cond. on citations 0.416 0.416
Elasticity of Substitution between past Knowledge Stock and New Ideas -0.4 -0.4
Technology Novelty index 0.554 0.554
Regression coefficient of innovation value on firm size 0.33 0.33
New-to-incumbent ratio 0.054 0.059
Firm size ratio by fourth-to-first-quartile of citations 1.18 1.18
Citation ratio between new and incumbent firms 1.361 1.385

Notes: This table compares the moments generated from the calibrated model and the data. In general,
the model generated moments match the data well.

Our estimates indicate that, relative to startups, incumbent firms face substantially
lower realization potential when utilizing innovations, primarily due to frictions in

adopting and integrating new technologies. Specifically, the ratio
∫

γ(z0) dΨ(z0)∫
z0 dΨ(z0)

= 0.15 is
significantly below one. Moreover, synergy plays an important role in commercialization:
the scale parameter q̃0 in the synergy function is as small as 2.2 × 10−4, and the elasticity
parameter is 0.33. This implies that an incumbent firm of average size can generate
approximately 16 times more value at commercialization than a startup due to the
synergy effect. When combining the effects of synergy and adoption frictions, this
advantage shrinks to about 2.4 times.

Panel A of Figure 6 illustrates the relationship between optimal firm size (q̃∗) and
idea quality (z0) when an inventor chooses to contribute her idea to an incumbent firm,
as observed in both the data and the calibrated model.22 The positive relationship reflects
assortative matching between inventors and firms—higher-quality ideas are matched
with larger firms, enabling those firms to expand further.

Technological novelty waves influence both the extensive and intensive margins of
idea allocation. The extensive margin governs the number of inventors starting new

22The model counterpart without matching frictions (h = 1) is shown in Figure ?? in the Appendix.
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Table 8: Estimated Parameter Values

Parameter Description Value
λ0 Innovation arrival rate 7.48
α Shape of idea quality distribution 2.34
zm Scale of idea quality distribution 5.3E-3
ϕ Innovation quality draw 0.72
η CES elasticity of substitution -0.4
B Maturity of technology 0.0076
b Exponent of the synergy function 0.33
q0 Denominator of the synergy function 2.2E-4
h Matching friction (incumbent) 0.18
hs Matching friction (startup) 0.54

Notes: Parameters in this table are jointly calibrated to minimize
the distance between the model and data moments.

businesses, while the intensive margin determines the firm size chosen by inventors who
join incumbents. Panel B of Figure 6 illustrates these dimensions by showing optimal firm
size choices across idea qualities in a frictionless matching environment (h = hs = 1). A
positive firm size indicates joining an incumbent; zero implies starting a new business.
The figure compares 1986 and 2005 by plotting optimal choices when the technological
stock, B, adopts the value in the two years, respectively, such that the model-generated
average forward-to-backward citation ratio ( B

B+
∫

z0dΨ(z0)
) matches 1-Novelty Index in

the data. 1986 is a peak of technological novelty, while 2005 is a trough with mostly
incremental innovations. In 2005, the threshold idea quality for forming a startup is
higher, implying more inventors opt to join incumbents. Moreover, by absorbing higher-
quality ideas, incumbents grow larger, enhancing the synergy they offer. This leads to
stronger positive assortative matching between firm size and idea quality. Both margins
contribute to greater market concentration in 2005.

6 Quantitative Analysis

Using the calibrated model, we simulate the model beginning from 1986, the first peak
of the technology wave in the sample. In each year, we adjust the technological stock, B,
to match 1-Novelty Index in the data. In another word, we fix all the parameters except
the one that governs the aggregate technological novelty shocks. The simulation yields
the model-generated market concentration and the innovation allocation in each year. We
compare the model-generated results with the data and calculate their correlations.

In the simulation, each year must satisfy equilibrium conditions, though the system
does not necessarily lie on a balanced growth path. In this non-stationary environment,
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Panel A: Positive Assortative Matching for Incumbents
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Figure 6: The Trend and Detrended Time Variations of the HHI
Notes: Panel A exhibits the mapping between inventors’ idea quality and the firm sizes if inventors opt to
develop their ideas in incumbent firms. The idea quality is measured by the number of patent citations
and is classified into four quartiles. The firm size is measured by the number of employees. The average
employment of firms corresponding to the first citation quartile is normalized to be one. The dashed curve
represents the model prediction and the solid one is the actual data in Figure 5. Panel B shows the optimal
firm size by idea quality. The blue solid line and the red dashed line represents 1986 and 2005, respectively.

the model state is characterized by two evolving state variables: the total number of firms,
N f , and the firm size distribution, f (q). Unlike the balanced growth path, these variables
are not stationary and adjust each year to satisfy equilibrium conditions. Consequently,
the entry-exit equality in Equation ( 31) no longer holds, introducing a gap between entry
and exit that drives the system’s dynamics. The number of firms evolves according to:

N′
f = N f (1 − τ) + λI , (36)

where the number of entrants, λI , is endogenously determined by the model. If entry
exceeds exit, the firm count rises the following year; if exit exceeds entry, it declines.
Meanwhile, shifts in the inventor-firm matching process generate changes in the firm
size distribution. Using the distribution from the previous year as a starting point, we
simulate firm dynamics over one period to obtain the updated distribution. Together, the
evolving N f and f (q) shape the trajectory of market concentration over time.

6.1 Technology Waves and the Market Concentration

Figure 7 presents the simulated evolution of market concentration, measured by
the Herfindahl-Hirschman Index (HHI), alongside its empirical counterpart and the
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Figure 7: Technology Waves and Model Generated HHI

Notes: This figure shows the technological waves and the trend of model-generated market concentration
over time. The blue curve, based on the methodology defined in this paper, calculates the relative ratio of
forward citations to the sum of forward and backward citations (same as Figure 1). The red solid curve
displays the simulated HHI in each year, which is normalized by the HHI in 1986. The red dashed curve is
the empirical HHI moved forward for three years, also normalized by 1986.

technological novelty waves. The solid red curve depicts the HHI from the data,
normalized to its 1986 level, while the dashed red curve shows the simulated HHI
from the model, also normalized by the 1986 value. To illustrate the connection with
technological waves, the figure also includes the relative ratio of forward citations to the
sum of forward and backward citations-following the methodology defined in this paper,
and consistent with Figure 1. The model-generated HHI closely mirrors its empirical
counterpart and exhibits a negative relationship with technological waves.

Although the calibration does not explicitly target any measure of market
concentration, the model successfully replicates both the upward trend and cyclical
fluctuations observed in the data. To disentangle these components, we fit separate
linear trends to the empirical and simulated HHI series and subtract them to obtain the
detrended time variations, as shown in Figure 8. Summary statistics are reported in the
first two rows of Panel A in Table 9.

The average HHI in the model over the 1986–2016 period is 1.236—above one and
comparable to the empirical counterpart. The estimated linear trend has a slope of
0.0185 in the model, closely matching the empirical slope of 0.0193. This implies that
the technological novelty waves alone account for approximately 95.9% of the observed
increase in market concentration over the sample period. The detrended HHI series from
the model also closely tracks the data, with a correlation coefficient of 0.910. The standard
deviation of the model’s detrended series is 0.066, close to 0.072 in the data. The first-order
autocorrelations are 0.922 in the model and 0.926 in the data. These results suggest that
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Figure 8: The Trend and Detrended Time Variations of the HHI

Table 9: Comparison between Model and Data

No Detrend Detrend
Mean Time Trend S.D. Autocorr Corr with Data

Panel A. HHI
Data 1.237 0.0193 0.072 0.926 1
Model 1.236 0.0185 0.066 0.922 0.910

Panel B. New-to-Incumbent Ratio
Data 0.052 -5.05E-5 0.007 0.830 1
Model 0.072 -2.49E-3 0.031 0.883 0.825

Notes: This table shows the trend and detrended time variations of the
HHI and New-to-Incumbent ratio in the data and the model.

technological waves are an important driver of the fluctuations in market concentration.
To examine the relationship between detrended HHI and technological novelty

waves in both the model and the data, we compute the cross-correlation between
the former (xt) and the latter (yt+k) at various time lags, corr(xt, yt+k), following the
method in Stock and Watson (1999). A negative value of k compares the HHI with
past technological waves, while a positive k compares it with future waves. The
results are presented in Panel A of Figure 9. In the data, the absolute value of the
correlation is highest when k is negative, indicating that market concentration reacts to
past technological waves. The peak correlation occurs at k = −2, suggesting a typical
response lag of approximately two years. The model produces a similar response pattern,
with the highest correlation also occurring at k = −2. This alignment indicates that
the model not only captures the cyclical dynamics of market concentration, but also
successfully replicates its lagged response to technological change.

39



Panel A: Correlation between the HHI and Tech Waves
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Figure 9: Cross Correlations with the Technological Waves

6.2 Allocation of ideas

Empirically, this paper shows that inventors are more likely to form startups when
revolutionary technologies appear and join incumbent firms when technologies mature.
This is repeatedly shown by the solid curve in Panel A of Figure 10. The New-to-
Incumbent ratio generated by the model is shown by the dashed curve in the same
figure. They have nearly simultaneous waves. To further evaluate their relationship,
we use linear trends to fit the two curves respectively, and then subtract them to get
the detrended time variations. The correlation between the detrended model-generated
and the detrended actual new-to-incumbent ratio is 0.825. Further summary statistics are
diplayed in Panel B of Table 9.

The average New-to-Incumbent ratio in the model is 0.072, slightly higher than the
corresponding value of 0.052 in the data. The slope of the linear trend is −2.49E − 3,
indicating a declining share of inventors launching new businesses. While this is
qualitatively consistent with the data, the model exhibits a larger magnitude of decline.
The detrended series also shows greater variability, with a standard deviation of 0.031
compared to 0.007 in the data, and a slightly higher first-order autocorrelation (0.883 vs.
0.830). The model’s larger amplitude is analogous to the excessive volatility of model-
predicted real gross investment per capita in real business cycle models—both stem from
the absence of adjustment costs. In our model, inventors are short-lived and choose
between joining startups or incumbent firms without regard to their previous affiliations.
As a result, the New-to-Incumbent ratio reacts immediately to aggregate shocks. This
dynamic is supported by the cross-correlation between the New-to-Incumbent ratio and
waves of technological novelty, shown in Panel B of Figure 9. The correlation coefficient
peaks at a zero lag in both the model and the data, but the model exhibits a stronger
contemporaneous correlation (0.912 vs. 0.702).
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Figure 10: The Trend and Detrended Time Variations of the HHI
Notes: Panel A shows the technological waves and the trend of model-generated share of innovations in
startups over time. The dashed curve displays the simulated New-to-Incumbent ratio in each year whereas
the solid curve shows the New-to-Incumbent ratio in the data (same as Figure 4). Panel B shows the
extensive margin of the model-generated market concentration over time. The dashed curve and short-
dashed curve displays the simulated HHI and the HHI only considering extensive margin, respectively.
Both are normalized by the model generated HHI level in 1986.

6.3 Decomposition of the Intensive and Extensive Margins

To isolate the two margins, we simulate the HHI based on the evolution of firm numbers
over time while holding the firm size distribution constant. In this setup, changes
in HHI are driven solely by firm entry and exit, effectively removing the intensive
margin by excluding resource reallocation among incumbents. The resulting HHI,
capturing only the extensive margin, is shown as the short-dashed curve in Panel B of
Figure 10, alongside the HHI generated from the full model with both margins (dashed
curve). While the extensive margin alone reproduces the overall upward trend in market
concentration, its response to technological shocks is slower. This suggests that the
intensive margin plays a key role in accelerating the HHI’s responsiveness. Figure 9
supports this interpretation: in both the model and the data, the peak cross-correlation
occurs at k = −2, whereas under the extensive margin alone, it shifts to k = −3.

In summary, the extensive and intensive margins jointly affect the evolvement of
market concentration. (1). The extensive margin is a main driver of the trend. (2). The
intensive margin responds more swiftly to the technological waves.

6.4 Checking the Effect of Aggregate Novelty

The lower realization potential of new ideas within incumbent firms during periods of
heightened technological breakthroughs is evidenced by the negative coefficient on the
interaction between patent citations and the aggregate novelty index in Table 4. To assess

41



whether the model captures a similar effect, we replicate column (3) of Table 4 using
simulated data. The estimated interaction term in the regression with simulated data is
−0.428, closely matching the empirical value of −0.390. Importantly, this regression was
not targeted during the calibration process. Further details on the simulated regression
are provided in Appendix E.1.

7 Conclusion

This paper studies how technological waves shape the market concentration, through the
reallocation of inventors. It provides empirical evidence and structural analysis showing
that market concentration is inversely related to and lagged behind the technological
waves. This discovery suggests the presence of a low-frequency business cycle in the
economy. We explore one potential channel behind this connection: the allocation of
ideas. Using the data from the Longitudinal Business Database (LBD) from the Census
Bureau and the patent information from the USPTO, this paper shows that the share of
patents formed in new businesses co-move closely with the technological waves. At the
peaks of the technological waves, a larger share of patents are forming in new businesses,
while at the troughs, a larger share of patents come from existing businesses.

This paper proposes a theoretical framework that elucidates the decision-making
process of inventors regarding their choice of innovation pathways, thus providing an
explanation for the observed empirical patterns. Inventors are faced with a choice
between forming a new business of a random size with a partner or joining an incumbent
business of a selected size. This decision hinges on a trade-off: new businesses offer better
incentives and adaptability in embracing novel technologies, while incumbents possess
synergies and experience in commercialization. Our model effectively captures the
relationship between technological waves and market concentration, primarily through
the redistribution of innovative ideas. It implies that the deceleration in the emergence
of groundbreaking technologies could be a significant contributing factor to the rise in
market concentration after the 2000s.
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Online Appendix

A Data Description

The data used in this paper includes the Longitudinal Business Database (LBD), the
USPTO patent data, and the Compustat Fundamentals Annual. This section provides
details about the information of the datasets and the construction of key variables.

A.1 The USPTO Patent Data

The USPTO patent data contains information of all patents issued between 1976 and 2022.
It can be downloaded from the PatentsView website. For each patent, the data documents
the patent type (utility, design, plant, etc.), the IPC code indicating its technological class,
the grant year, and the patents it cites and it is cited. We keep all the utility patents to
focus our attention to the introduction of new products and processes.
Forward Citations Forward citations are citations a focal patent receives from others. It
indicates how many patents follow the focal one. This paper calculates the number of
forward citations each patent gets within five years after issuance.
Backward Citations Backward citations are citations that other patents receive from the
focal patent. It indicates to what extent the focal patent follows the existing technology.
This paper calculates the number of backward citations by counting the number of
patents cited by the focal patent that were granted within the previous five years.
The Novelty Index According to the definition in the paper, we calculate this index by
dividing the number of forward citations received by all the utility patents granted in
a year by the summation of the forward and backward citations of those patents. The
Novelty Index by IPC is derived in a similar way for each IPC class and each year.

A.2 The Compustat Fundamentals Annual

The Compustat Fundamentals Annual contains information of all the publicly listed firms
in the US. It records the firms’ net sales, the number of employees, the primary industry
(4-digit SIC code), and the headquarter locations of each firm. We keep all the firms that
are headquartered in the US.
Primary Industry The primary industry of each firm in Compustat is based on the 4-digit
SIC code assigned to each firm in the Fundamentals Annual. The code can be aggregated
to different levels. Manufacturing is corresponding to SIC codes 2000-3999; utility and
transportation is corresponding to SIC codes 4000-4999; wholesale trade is corresponding
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to SIC codes 5000-5199; retail trade is corresponding to SIC codes 5200-5999; finance is
corresponding to SIC codes 6000-6999; service is corresponding to SIC codes 7000-8999.
The Herfindahl-Hirschman Index (HHI) Following the methods in Grullon, Larkin and
Michaely (2019), we first calculate the HHI of each 3-digit SIC code by the squared ratios
of firm net sales to the total net sales in that 3-digit industry. To get the aggregate HHI,
we sum up the HHIs of all the 3-digit SIC codes and weight them by their total net sales.

A.3 The Longitudinal Business Database (LBD)

The LBD is collected by the US Census Bureau and is an establishment-level data that
covers the universe of US businesses with paid employees from 1976 to 2020. The dataset
assigns a firm ID to all establishments belonging to the same firm. Using the Business
Dynamics Statistics of Patenting Firms (BDS-PF) patent assignee-FIRMID crosswalk from
the Census, this paper links the USPTO patent data with firms in the LBD, therefore,
derives all utility patents in the US that were granted to employer businesses between
1976 and 2020.
New-to-Incumbent Ratio After merging the patent data with the LBD, this paper can
identify the firm each patent was granted to. If the firm is less than or equal to five years
old in the patent’s grant year, we indicate that the idea behind the patent was absorbed
by a new firm 5 years ago. Otherwise, we indicate that the idea was absorbed by an
incumbent firm 5 year ago. Then we divide the number of ideas combined with new firms
by the number of ideas combined with incumbent firms to get the New-to-Incumbent
Ratio.
Firm Size The LBD documents the number of employees each firm hires in each year. We
deriving the mapping between patent forward citations and incumbent firm size, we use
the number of employees as a proxy for size.

B More Empirical Evidence

B.1 Empirical Patterns without Smoothing

Figure 11 and Figure 12 present the patterns of the technological waves, HHI, and
the New-to-Incumbent ratio without smoothing techniques. The negative correlation
between the HHI and the Novelty Index, as well as the positive correlation between the
New-to-Incumbent ratio and the Novelty Index, remain prominent.

47



.45

.5

.55

.6

T
e

c
h

n
o

lo
g

y
 W

a
v
e

s
 M

e
a

s
u

re
d

 b
y
 F

/(
F

+
B

)

.08

.09

.1

.11

.12

.13

M
a

rk
e

t 
C

o
n

c
e

n
tr

a
ti
o

n
 (

H
H

I)

1980 1990 2000 2010 2020

Year

HHI

F/(F+B)

Figure 11: Technological Waves and Market Concentration without Smoothing
Notes: This figure shows the technological waves and the trend of market concentration over time. The
blue dashed curve, based on the methodology defined in this paper, calculates the relative ratio of forward
citations to the sum of forward and backward citations. The red solid curve displays the HHI in each year,
which is the weighted average of the industry-level HHI in each year. The weight is the total sales of firms
in each industry. The two curves have different y-axises, which are shown respective on the left and right.
Sources: Compustat Fundamental Annuals and USPTO patent and citation data.
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Figure 12: Technological Waves and Idea Allocation without Smoothing

Notes: This figure shows the technological waves and the idea allocation between new and incumbent firms
over time. The blue dashed curve, based on the methodology defined in this paper, calculates the relative
ratio of forward citations to the sum of forward and backward citations. The green solid curve displays the
“New-to-Incumbent Ratio” defined in the paper, capture where new ideas contribute their value. The two
curves have different y-axises, which are shown respective on the left and right.
Sources: Longitudinal Business Database (LBD) and USPTO patent and citation data.
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B.2 Technological Waves by Technological Field

The Novelty index across the nine technological fields is shown in Figure 13. The index
is based on the same algorithm as in Equation 1 except that the forward and backward
citations are aggregated across each of the 1-digit IPC code. The top three fields with
the highest Novelty index are Human Necessities, Physics, and Electricity at the first
peak; Electricity, Physics, and Human Necessities at the second peak; Human Necessities,
Chemistry and Metallurgy, and Mechanical Engineering etc. at the third peak.

Figure 13: Technological Waves by Technological Fields

Notes: This figure shows the technological waves by the nine technological fields between 1981 and 2017.
The nine fields are defined by the 1-digit IPC code. The technological waves are measured by the Novelty
index as defined by Equation 1 in the paper.
Sources: USPTO patent and citation data.

B.3 Novelty Index in Europe

To calculate the Novelty Index for European countries with intensive patenting activities,
we use data from PATSTAT (Patent Statistical Database), a comprehensive global
dataset maintained by the European Patent Office (EPO). PATSTAT provides detailed
bibliographic data on patents from various patent offices worldwide, with a particular
focus on those filed through the EPO. We restrict our sample to patents with inventors
based in European countries. The six countries with the highest number of patent
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issuances between 1982 and 2016 are Germany, France, the United Kingdom, Italy,
Switzerland, and the Netherlands. Using the definition of the Novelty Index as outlined
in Equation 1, we calculate the technological waves in these six countries and present
them in Figure 14. Across all six countries, we observe an overall declining trend in
technological novelty, with common peaks in the mid-1980s and early 2010s. Italy also
experienced a distinct peak in the mid-1990s. In general, the technological trends in these
European countries with the highest patenting activity mirror those observed in the U.S.23

Figure 14: Technological Waves in European Countries

Notes: This figure shows the technological waves in six European countries with the highest number of
patent issuances between 1982 and 2016. The technological waves are measured by the Novelty index as
defined by Equation 1 in the paper.
Sources: PATSTAT (Patent Statistical Database).

B.4 Relationship with the Technology Waves

Table 10 exhibits the time trend of the technological novelty waves, the market
concentration measured by the HHI, and the New-to-Incumbent Ratio of idea allocations
(Panel A). It also displays the cross correlation of the two latter time series with the
technological waves at different year gaps (Panel B). The time trend is derived by fitting

23Similar results can be obtained by calculating the Novelty Index using Google Patents data, as cleaned
by Ayerst et al. (2023). These results are available upon request.
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a linear trend to the focal time series and taking its slope. The cross correlations are
obtained by calculating the correlation coefficients of the detrended time series when the
year gaps of the two series are respectively −3, −2, −1, 0, 1, 2, 3. The detrending process
subtracts the linear trend from the original time series. The cross correlations capture not
only the co-movement of the different time series, but also the relative timing of their
movements. The first row of each panel shows the statistics for the whole sample; the
subsequent rows are statistics by major industries according to the Standard Industrial
Classification (SIC) code or technological fields according to the International Patent
Classification (IPC).

Table 10: Time Trend and Cross Correlation

Time Trend Detrended Cross Correlation

Panel A. HHI

Tech Wave HHI k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3
All -0.002 0.001 -0.683 -0.770 -0.763 -0.654 -0.424 -0.146 0.145
Mining & Construction -0.002 0 -0.747 -0.782 -0.688 -0.500 -0.279 -0.046 0.189
Manufacturing -0.002 0.001 -0.226 -0.475 -0.637 -0.692 -0.747 -0.663 -0.460
Transportation & Utilities -0.001 0.001 -0.197 -0.132 -0.041 0.043 0.330 0.523 0.599
Wholesale & Retail Trade -0.002 0.005 -0.495 -0.483 -0.432 -0.344 -0.195 -0.039 0.117
Finance -0.003 0 -0.330 -0.339 -0.330 -0.272 -0.074 0.107 0.210
Services -0.001 0.004 0.255 0.366 0.457 0.539 0.654 0.734 0.771

Panel B. New-to-Incumbent Ratio

Tech Wave N-to-I Ratio k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3
All -0.002 -0.001 0.107 0.314 0.504 0.612 0.536 0.317 -0.001
Human Necessities -0.001 -0.001 0.539 0.557 0.514 0.402 0.199 -0.063 -0.361
Performing Operations -0.003 -0.001 0.117 0.210 0.283 0.301 0.191 0.017 -0.201
Chemistry; Metallurgy -0.001 0.001 0.239 0.231 0.211 0.163 0.049 -0.128 -0.349
Textiles; Paper -0.002 -0.001 0.458 0.451 0.462 0.417 0.371 0.270 0.189
Fixed Construction -0.002 0 0.211 0.331 0.397 0.386 0.297 0.215 0.161
Mechanical Engineering -0.001 0 -0.456 -0.505 -0.467 -0.358 -0.208 -0.061 0.059
Physics -0.003 -0.001 -0.156 0.016 0.212 0.343 0.284 0.068 -0.207
Electricity -0.003 -0.002 0.373 0.465 0.540 0.580 0.552 0.367 0.070

Notes: This table shows the trends of the technological waves, HHI, New-to-Incumbent ratio and the detrended cross
correlations among them. The trend is derived by running linear regressions of the focal time series on year and taking
the coefficient; the cross correlations are derived by computing the correlation coefficients at different year gaps of the
detrended time series.

B.5 Alternative Measures of Market Concentration

The main text of this paper uses the Herfindahl-Hirschman Index to measure market
concentration. It captures the whole distribution of firm sales in the economy, but the
limitation is that it is based on only publicly listed firm. An alternative measure of
market concentration is the share of sales by the top firms. This paper adopts the cleaned
data series by Kwon, Ma and Zimmermann (2023) to calculate respectively the three-year
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Panel B: Receipt Share of the Top 1% Firms
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Figure 15: Receipt Shares by Top firms
Notes: This figure shows the three-year moving average of the receipt share of the top 0.1% (Panel A) and 1%
firms (Panel B). The receipt shares are from the cleaned data series by Kwon, Ma and Zimmermann (2023),
which is posted on https://businessconcentration.com/. The data source is the Statistics of Income
(SOI) and the associated Corporation Source Book published annually by the IRS. Their statistics cover the
whole population of US corporations.
Sources: https://businessconcentration.com/.

moving average of the receipt share of the top 0.1% and 1% firms. The top shares are
generated by the IRS data, which covers a more comprehensive set of firms. So, it can
be used as a complement to the HHI measure in the paper. As displayed in Figure 15,
the top shares exhibit increasing trends in general but with fluctuations. The peaks and
troughs of the fluctuations appear nearly simultaneously with the HHI measured in this
paper, showing the robustness of the market concentration patterns shown in the paper.

B.6 Sector-Level Relationship between Tech Waves and HHI

To examine the sector-level relationship between the market concentration and
technological waves, we calculate the HHI and the Novelty Index by major sectors
defined by the SIC code—Mining and Construction, Manufacturing, Transportation and
Utilities, Wholesale and Retail Trade, Finance, and Services.24 Aggregating the HHIs
within each major sector is a straightforward process, accomplished by computing a
sales-weighted average of the HHIs at the 2-digit SIC level using Compustat. However,
performing a similar aggregation for the "Novelty" Index presents a more complex
challenge, since patents are classified by the technology class (as captured by the
International Patent Classification (IPC)) instead of sectors. To map the technology classes

24The division is according to the U.S. department of Labor. Mining includes SIC 10-14; Construction
includes SIC 15-17; Manufacturing includes SIC 20-39; Transportation and Utilities includes SIC 40-49;
Wholesale Trade includes SIC 50-51; Retail Trade includes SIC 52-59; Finance includes SIC 60-67; Services
includes SIC 70-89. To ensure sufficient observations, Mining and Constructions are combined; Wholesale
and Retail Trade are combined.
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Panel A: Mining & Construction
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Panel B: Manufacturing
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Panel C: Transportation and Utilities
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Panel D: Wholesale & Retail Trade
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Panel E: Finance
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Panel F: Services
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Figure 16: Technological Waves and Market Concentration by Industry
Notes: This figure shows the technological waves and the trend of market concentration over time by major
sectors. The blue dashed curve, based on the methodology defined in this paper, calculates the relative
ratio of forward citations to the sum of forward and backward citations in each major sector. The red solid
curve displays the HHI in each year, which is the weighted average of the 2-digit-SIC-level HHIs by major
sectors and years. The weight is the total sales of firms in each 2-digit SIC industry. The two curves have
different y-axises, which are shown respective on the left and right.
Sources: Compustat Fundamental Annuals and USPTO patent and citation data.

to sectors, we use the concordance developed by Silverman (2002) that links the 4-digit
IPC code to the 4-digit SIC code according to usage. After applying this concordance,
we obtain the counts of forward and backward citations at the 4-digit SIC level. These
citation counts are then cumulatively summed up to the primary sector level, allowing us
to calculate the "Novelty" Index for each sector. The visual representation of our findings
can be observed in Figure 16.

Generally, a discernible negative relationship between technological waves and
market concentration prevails across most major industries. The linear trend of the HHIs
are non-negative, as opposed to negative trend of the technological waves. The detrended
cross correlation between the two time series has the highest absolute magnitude at
k = −2 in most of the sectors. corr(xt, yt−2) is respectively −0.782 for Mining and
Construction; −0.475 for Manufacturing, −0.132 for Transportation and Utilities, −0.483
for Wholesale and Retail Trade, −0.339 for Finance, and 0.366 for Services. The cross
correlations when k ∈ {−3,−2,−1, 0, 1, 2, 3} for each sector are shown in Table 10 in
Appendix B.4. These findings offer additional supporting evidence suggesting that
market concentration may be influenced by the dynamics of technological novelty waves.
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Table 11: Relationship between HHI and Novelty Index at the 3-digit NAICS code

HHI
(1) (2) (3) (4) (5) (6) (7) (8)

Novelty Index -0.0375*** -0.0102** -0.0292** -0.0121**
(0.0115) (0.00483) (0.0120) (0.00501)

Novelty Index(Lag 2 yrs) -0.0409*** -0.0133*** -0.0326*** -0.0169***
(0.0348) (0.0257) (0.0554) (0.0411)

Size (Total Payroll) -0.00258** 0.0138*** -0.00430*** 0.0205*** -0.00242** 0.0177*** -0.00437*** 0.0238***
(0.00107) (0.00116) (0.00111) (0.00197) (0.00110) (0.00116) (0.00113) (0.00193)

Industry Fixed Effect N Y N Y N Y N Y
Year Fixed Effect N N Y Y N N Y Y

Observations 3200 3200 3200 3200 3200 3200 3200 3200
R-squared 0.005 0.844 0.023 0.848 0.005 0.859 0.025 0.862

Notes: Standard errors are clustered at the 3-digit-NAICS level. The HHI and industry size are measured
by payroll in the LBD. Columns (1) and (5) include no fixed effects. Columns (2) and (6) incorporate
industry fixed effects. Columns (3) and (7) incorporate year fixed effects. Columns (4) and (8) include both
industry and year fixed effects. To comply with Census Bureau disclosure requirements, the number of
observations is rounded to the nearest hundred. *** Significant at the 1 percent level; ** Significant at the 5
percent level; * Significant at the 10 percent level.

B.7 Regression Analysis—Tech Waves and HHI of Sales

Table 11 presents the regression results for the HHI and the Novelty Index. The HHI
is measured by firm payroll using the Census data at the 3-digit NAICS industry level.
The Novelty Index, calculated at the 4-digit IPC level, is mapped to the 3-digit NAICS
level using the concordance developed by Silverman (2002), which links IPC and SIC
codes based on patent usage, combined with a mapping between SIC and NAICS codes.
A significant negative relationship is observed across all specifications, both with and
without industry and year fixed effects. The coefficient is larger in absolute terms when
the 2-year lagged Novelty Index is used.

B.8 IPC-Level Relationship between Tech Waves and New-to-
Incumbent Ratio

To assess the robustness of the relationship between idea allocation and technological
waves, this paper compares the two trends by patent technological fields, categorized
by the first digit of the patent IPC code. The IPC-level "Novelty" Index and "New-to-
Incumbent Ratio" are computed using the same methodology as described in equations 1
and 5, with patent sets segregated according to their respective technology classes. Figure
17 illustrates that a positive correlation between idea allocation and technological waves
is consistently observed across most technology classes. When a specific technology class
experiences breakthroughs, there is an increase in the flow of ideas toward new startups.
The contemporaneous correlation coefficients between the two curves are, respectively,
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Figure 17: Technological Waves and Idea Allocation by Patent Technology Class

Notes: This figure shows the technological waves and the idea allocation between new and incumbent
firms by patent technology class. The blue dashed curve, based on the methodology defined in this
paper, calculates the relative ratio of forward citations to the sum of forward and backward citations. The
green solid curve displays the “New-to-Incumbent Ratio” defined in the paper, capture where new ideas
contribute their value. The two curves have different y-axises, which are shown respective on the left and
right.
Sources: Longitudinal Business Database (LBD) and USPTO patent and citation data.

0.40 for Human Necessities, 0.30 for Performing Operations, 0.16 for Chemistry, 0.42 for
Textiles, 0.39 for Fixed Constructions, -0.47 for Mechanical Engineering, 0.34 for Physics,
and 0.58 for Electricity. The cross correlations when k ∈ {−3,−2,−1, 0, 1, 2, 3} for each
technological field are shown in Table 10 in Appendix B.4.

B.9 Patents’ Economic Value Regression

Table 12 uses firm sales as a proxy for size and shows the results of the regression on
patents’ economic value (Equation 8). The coefficients are close to those in Table 4, which
uses employment as a measure of firm size. Notably, the coefficient for the firm size
variable is nearly identical in both tables, indicating a robust estimation of the elasticity
of synergy with respect to incumbent firm size in the calibration.
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Table 12: Factors of Patents’ Economic Value for Incumbent Firms

Ln(Patent Economic Value)
(1) (2) (3) (4) (5) (6)

Ln(1+Firm Sales) 0.331*** 0.331*** 0.331***
(0.0142) (0.0142) (0.0142)

Ln(1+Citations) 0.0809*** 0.00273*** 0.236*** 0.0131** 0.192** 0.0114**
(0.00535) (0.000583) (0.0644) (0.00570) (0.0827) (0.00499)

Ln(1+Citations)×FB Ratio -0.285** -0.0191*
(0.118) (0.0106)

Ln(1+Citations)×IPC FB Ratio -0.205 -0.0161*
(0.147) (0.00906)

Year Fixed Effect Y Y Y Y Y Y
Year×IPC Fixed Effect Y Y Y Y Y Y
Year×Firm Fixed Effect N Y N Y N Y

Observations 1,118,163 1,107,618 1,118,163 1,107,618 1,118,059 1,107,513
R-squared 0.403 0.882 0.403 0.882 0.403 0.882

Notes: Standard errors are clustered at the year level. Columns (1)-(2) exclude the technological wave
measure and focus solely on the property of the patents and firms. Columns (3)-(4) show coefficients of
the regression equation (8). Columns (5)-(6) replace the yearly Novelty Index by the year-by-IPC Novelty
Index. The regressions control for year fixed effects and year by patent technology class fixed effects across
all specifications. The year by firm fixed effects are controlled in columns (2), (4), and (6). *** Significant at
the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

C Model and Proof

C.1 Production

The production sector features two types of firms: a representative final goods producer
and intermediate goods producers. The final good producer assembles intermediate
goods, denoted by j within the range [0, NF], to produce final goods. It chooses {yj}j

to maximize its profit using the technology described in Section 3.2. The final goods
producer’s problem can be written as:

max
{yj}

1
1 − β

∫ NF

0
qβ

j y1−β
j dj −

∫ NF

0
yj pjdj. (37)

The first-order condition
pj = qβ

j y−β
j

yields the demand function for goods produced by intermediate firms.
The intermediate goods are produced by their corresponding firm j ∈ [0, NF] using

only labor yj = q̄lj, where q̄ = 1
NF

∫ NF
0 qjdj represents the average quality, and lj

is the labor input. Intermediate good producers engage in monopolistic competition,
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optimizing their profit by choosing lj, pj, yj, given the wage level w:

max
lj,pj,yj

yj pj − wlj.

s.t. yj = q̄lj

pj = qβ
j y−β

j

(38)

The labor market clears, which derives that
∫ NF

0 qj

(
q̄(1−β)

w

) 1
β dj

q̄ = 1.
The value function of an intermediate firm q at time t is a linear function of firm size

q.
V(q, t) = νq. (39)

where ν = β

(r+τ)N1−β
F

.

Proof. The value function of an intermediate firm q at time t can be written as

V(q, t) =
∫ ∞

t
e−(r+τ)(s−t)βq/N1−β

F ds = νq.

When working in firm q̃, inventor z0 receives consumption:

cI
(
a, q̃, T̃

)
= a

(
Ṽ (q̃) + x̃ (z0, q̃) ν1S

)
+ T̃

where S denotes the event that the inventor successfully creates an innovation. The
expected consumption is

E (cI) = a
(
EṼ (q̃) + λ0eI x0 (z0, q̃) νdt

)
+ T̃,

and the associated variance is

Var
(
cI
(
a, q̃, T̃

))
= a2

τq̃2ν2dt︸ ︷︷ ︸
Var(Ṽ(q̃))

+ λ0eIE
(

x̃ (z0, q̃)2
)

ν2dt︸ ︷︷ ︸
Var(innovation)

 .

Proof. Inventor’s consumption is:

cI
(
a, q̃, T̃

)
= a

(
Ṽ (q̃) + x̃ (z0, q̃) ν1S

)
+ T̃
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where S denotes the event that the inventor successfully creates an innovation:

1S =

1, Pr = λ0eIdt

0, Pr = 1 − λ0eIdt

The expected consumption is:

E (cI) =aE
(
Ṽ (q̃) + x̃ (z0, q̃) ν1S

)
+ E

(
T̃
)

=a
(
E
(
Ṽ (q̃)

)
+ E (x̃ (z0, q̃) ν1S)

)
+
(
T̃
)

Upon the creation of an innovation, its value is a random draw from a distribution which
is independent of its realization probability, yielding:

E (x̃ (z0, q̃) ν1S) =E (x̃ (z0, q̃) ν)E (1S)

=x̃0 (z0, q̃) νλ0eIdt

Therefore:
E (cI) = a

(
EṼ (q̃) + λ0eI x0 (z0, q̃) νdt

)
+ T̃,

The variance in consumption is

Var
(
cI
(
a, q̃, T̃

))
=var

(
a
(
Ṽ (q̃) + x̃ (z0, q̃) ν1S

)
+ T̃

)
=a2 (var

(
Ṽ (q̃)

)
+ var (x̃ (z0, q̃) ν1S)

)
,

because the firm value prior to innovation, Ṽ (q̃), is independent of innovation and the
wage T̃ is constant.

The uncertainty in the first component solely comes from exogenous exit:

Ṽ (q̃, t) =

0, Pr = τdt

Ṽ (q̃, t − dt) , Pr = 1 − τdt

So, the variance of the firm value can be rewritten as:

var
(
Ṽ (q̃)

)
=τṼ (q̃)2 dt

=τq̃2ν2dt
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The uncertainty in the innovation process is:

var (x̃ (z0, q̃) ν1S) =E
(
(x̃ (z0, q̃) ν1S)

2
)
− E ((x̃ (z0, q̃) ν1S))

2

=λ0eIν
2dtE

(
x (z0, q̃)2

)
− (λ0eIνdtE (x (z0, q̃)))2

=λ0eIν
2dtE

(
x (z0, q̃)2

)
when dt → 0. Hence, the variance in consumption is:

Var
(
cI
(
a, q̃, T̃

))
= a2

τq̃2ν2dt︸ ︷︷ ︸
Var(Ṽ(q̃))

+ λ0eIE
(

x̃ (z0, q̃)2
)

ν2dt︸ ︷︷ ︸
Var(innovation)

 .

C.2 Closed Form Model

The firm’s problem in Equation 24 can be rewritten as:

max
a

(
Ṽ (q̃) + λ0eI x0 (z0, q̃) νdt

)
− ū (z0)

− Aa2
(

τq̃2ν2dt + λ0x0 (z0, q̃)2 ν2dt
)
− 1

2
e2

I

st eI = λ0ax0 (z0, q̃) ν

(40)

Putting the expression of eI into the maximization problem and taking the FOC with
regard to the equity share, a, derives,

a∗ =
λ2

0x0 (z0, q̃)2 ν2

λ2
0x0 (z0, q̃)2 ν2 + 2A

(
τq̃2ν2 + λ0x0 (z0, q̃)2 ν2

)
=

1

1 + 2 A
λ0
( τq̃2

λ0x0(z0,q̃)2 + 1)

(41)

Upon reviewing all contracts, an inventor with idea quality z0 chooses which firm q̃
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to work for by maximizing her utility:

max
q̃

u
(
cI
(
a, q̃, T̃

)
, eI
)
=E

(
cI
(
a, q̃, T̃

))
− AVar

(
cI
(
a, q̃, T̃

))
− R (eI)

st a = a∗ (q̃)

T̃ = T̃∗ (q̃)

(42)

Putting the expression of the optimal equity level, a∗(q̃), and T̃∗(q̃) = −a∗Ṽ (q̃) +
(1 − a∗) λ0eI x0 (z0, q̃) νdt into the maximization problem and solving the first-order
condition,

∂x0 (z0, q̃)
∂q̃

=
2Aτ

4Aτ
q̃

x0(z0,q̃) +
2Aλ0+λ2

0
q̃/x0(z0,q̃)

, (43)

derive the optimal firm size,

q̃∗ =

((
2Aλ0 + λ2

0
)
(γ (z0))

2b
2Aτq2b

0 (1 − 2b)

) 1
2−2b

.

The left-hand side and right-hand side of the first-order condition when b < 0.5 and
η = −1 are shown in Figure 18.

Figure 18: FOC Condition
Notes: This figure shows respectively the left-hand side (the blue curve) and the right-hand side (the red
curve) of Equation 43. When b < 0.5, there exists a unique intersection.
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C.3 Proof for Proposition 1

Proof.

∂q̃∗

∂z0
=

q̃∗

γ (z0) (1 − b)
∂ (γ (z0))

∂z0

=
q̃∗

γ (z0) (1 − b)
(
zη

0 + Bη
) 1

η −1
zη−1

0

where

q̃∗ =

((
2Aλ0 + λ2

0
)
(γ (z0))

2b
2Aτq2b

0 (1 − 2b)

) 1
2−2b

.

When b < 0.5, the optimal size increases in the inventor’s idea quality, z0.

C.4 Proof for Proposition 2

Proof. The highest expected utility uN (z0) an inventor z0 can obtain when working in a
new firm is

uN (z0) =u (cI (z0, q̃) , eI (z0, q̃))

=
1
2

λ0

λ0 + 2A
λ2

0z2
0,

which is unrelated to the technology wave indicator B. However, the highest expected
utility uI (z0) an inventor z0 can obtain when working in an incumbent firm depends on
B:

uI (z0) =u (cI (z0, q̃∗) , eI (z0, q̃∗))

=
1
2

λ2
0

(
2Aλ0+λ2

0
2(1−2b)Aτ

b
) b

1−b

(
1 + 2A(1−b)+λ0b

λ0(1−2b)

)
q

2b
1−b
0

γ (z0)
2

1−b

=
1
2

λ2
0q̂0γ (z0)

2
1−b ,

where q̂0 is a parameter (q̂0 =

(
2Aλ0+λ2

0
2(1−2b)Aτ

b
) b

1−b

(
1+ 2A(1−b)+λ0b

λ0(1−2b)

)
q

2b
1−b
0

). The utility uI (z0) is positively

associated with γ (z0), which increases in B, implies that ∂uI(z0)
B > 0
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An inventor decides whether to join a startup by comparing the incumbent-startup
utility uI (z0) − uN (z0) and zero. The utility gap increases in B, meaning that a larger
share of inventors would choose incumbent firms when B goes up.

C.5 Proof for Proposition 3

Proof. An inventor decides whether to join a startup by comparing the highest utility

offered by incumbents uI (z0) and startups uN (z0). When γ(z0)
1

1−b

z0
<
(

λ0
q̂0(λ0+2A)

) 1
2 ,

uI (z0) < uN (z0), inventor chooses to join a startup. When η < 0, if b <
min

(
z−η

0

)
min

(
z−η

0

)
+max(B−η)

, b − Bη

zη
0+Bη < 0 always holds:

∂
(

γ (z0)
1

1−b z−1
0

)
∂z0

=
γ (z0)

1
1−b

z2
0

1
1 − b

(
b − Bη

zη
0 + Bη

)
< 0,

since γ(z0) =
(
zη

0 + Bη
) 1

η . γ (z0)
1

1−b z−1
0 monotonically decreases in z0, when holding B

constant. It implies there exists a cutoff z̄0 (B), when z0 > z̄0 (B),

γ (z0)
1

1−b

z0
<

(
λ0

q̂0 (λ0 + 2A)

) 1
2

always holds, and hence uI (z0) < uN (z0), inventors opts in new businesses instead of
incumbent firms.

C.6 Full Model

The firm’s problem in Equation 24 becomes

max
a

(
Ṽ (q̃) + λ0eI x0 (z0, q̃) νdt

)
− Aa2

(
τq̃2ν2dt + λ0eIE

(
x̃ (z0, q̃)2

)
ν2dt

)
− R (eI)

st eI = λ0ax0 (z0, q̃) ν − Aa2λ0E
(

x̃ (z0, q̃)2
)

ν2

(44)

Given the contracts, inventor chooses which firm q̃ to work for by maximizing her
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utility. In each firm, her optimal effort level in given in Equation 29.

max
q̃

u
(
cI
(
a, q̃, T̃

)
, eI
)
=a (z0, q̃)

(
Ṽ (q̃) + λ0eI x0 (z0, q̃) νdt

)
+ T̃

−Aa (z0, q̃)2
(

τq̃2ν2dt + λ0eIE (x (z0, q̃))2 ν2dt
)
− R (eI)

st eI =λ0a (z0, q̃) x0 (z0, q̃) ν − Aa (z0, q̃)2 λ0E
(

x̃ (z0, q̃)2
)

ν2

The firm-level innovation arrival rate can be written as:

λq (q̃) =
hλ0eI (z∗0 , q̃)ψ (z∗0) dz∗0 + (1 − h) f̃ (q̃) dq

∫
z0∈{z0|q∗(z0)>0} λ0eI (z0, q̃)ψ (z0) dz0

NF f̃ (q̃) dq
(45)

where z∗0 is the inventor whose optimal choice is q̃.25

25If an inventor z0 works in a firm q̃ when the novelty index is γ, the utility level is:

u (z0, q̃) = λ0eI x0 (z0, q̃) ν − a2 A
(

λ0eIkx2
0 (z0, q̃) ν2 + τν2q̃2

)
− e2

I /2

Take derivative with respect to x0 (z0, q̃) yields:

du
dx0

=
∂u
∂x0

+
∂u
∂eI

∂eI
∂x0

+
∂u
∂a

∂a
∂x0

=λ0eIν − 2a2 Aλ0eIkx0 (z0, q̃) ν2 + (1 − a) λ0x0 (z0, q̃) ν
∂eI
∂x0

=λ2
0ax0 (z0, q̃) ν2

(
1 − 2a2 Akx0 (z0, q̃) ν

)
(1 − aAkx0 (z0, q̃) ν)

+ (1 − a) aλ2
0ν2 (1 − 2Aakx0 (z0, q̃) ν)

=λ2
0ax0 (z0, q̃) ν2

(
2 − 3aAkx0 (z0, q̃) ν + 2a3 A2k2x0 (z0, q̃)2 ν2 − a

)
=λ2

0ax0 (z0, q̃) ν2 [(1 − a) + (1 − aAkx0 (z0, q̃) ν)

− 2aAkx0 (z0, q̃) ν
(

1 − a2 Akx0 (z0, q̃) ν
)]

As long as aAkx0 (z0, q̃) ν < 1, the derivative is positive and the utility increases in x0, and hence it increases
in γ. It means that during the period when the technologies breakthroughs (B and γ are low), an inventor
expects systematically less utility when working in an incumbent firm.
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C.7 Starting up New Businesses

The partner’s problem has the same form as the incumbent firm’s, with q̃ = 0 and the
average innovation value being z0 instead of x0 (z0, q̃) (Equation 24).

max
a

(1 − a) (λ0eIz0νdt)− T̃

st eI = arg max
{

u
(
cI
(
a, 0, T̃

)
, eI
)}

u
(
cI
(
a, 0, T̃

)
, eI
)
≥ ū (z0)

(1 − a) (λ0eI x0 (z0, q̃) νdt)− T̃ ≥ 0

(46)

The partners are assumed to get zero profit due to competition.
The inventor decides her effort level by maximizing her utility, which yields:

eI = λ0az0ν − Aa2λ0E
(

z̃ (z0)
2
)

ν2 (47)

The firm’s problem in Equation 46 becomes

max
a

(λ0eIz0νdt)− Aa2
(

λ0eIE
(

z̃ (z0)
2
)

ν2dt
)
− 1

2
e2

I

st eI = λ0az0ν − Aa2λ0E
(

z̃ (z0)
2
)

ν2
(48)

It gives the highest utility an inventor can obtain when working in a startup.

D Innovation value in an incumbent firm

D.1 Model

When inventor with idea quality z0 works in an incumbent firm with quality q̃, the
resulting innovation value x̃(z0, q̃) is a random draw from a uniform distribution
U ((1 − ϕ) x0 (z0, q̃) ν, (1 + ϕ) x0 (z0, q̃) ν). The mean value of the innovation depends on
x0, which takes the following functional form:

x0 (z0, q̃) =
(

q̃
q̃0

)b

(Bη + zη)
1
η

where the parameter η governs the elasticity of substitution between technology stock B
and idea quality z. From the model, the economic value of a patent x̃ satisfied:

x̃
q̃b = ε (Bη + zη)

1
η
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where ε = ν
q̃b

0
ϵ. ν is an equilibrium outcome, q̃0 and b are parameters. ϵ is stochastic.

D.2 Data

The economic value of a patent is estimated by Kogan et al. (2017). The firm size is
mapped to the employment size.26 B and z are measured using average backward
citations in a year and the number of forward citations received by each patent. 27

D.3 Calibration

We estimate the parameter η using maximum likelihood estimation (MLE). To simplify
calculation, assume that ε follows a log-normal distribution log(ε) ∼ N(µε, σ2

ε ). 28. For
each observation, the probability to happen is:

Pr(x̃, q̃, b, B, z; η, µε, σ2
ε ) =

1
σε

√
2π

exp

−

(
log
(

x̃
q̃b

)
− 1

η (Bη + zη)− µε

)2

2σ2
ε


Choose {η, µε, σ2

ε } to maximize the aggregate likelihood. The estimation result yields:

η = −0.4

Meaning that the elasticity of substitution is 1
1+0.4 = 0.71.

E Quantification Details

E.1 Checking the Effect of Aggregate Novelty—Details

We replicate the regressions presented in Table 4 using the simulated data. In year 1986,
we randomly generate 40000 × N f of firms, which in turn create simulated observations
that are of comparable magnitude as data. We then track these simulated firms over a
31-year period, documenting their innovation quality, innovation value, and firm size.
Using this simulated dataset, the regression results are presented in Table 13.

The first three columns contain regression results derived from the actual data (same
as Table 4), while the last three columns display results based on the simulated data.
Employment is measured by q̃, and the variable Ln(1 + Employment) corresponds to

26The firm size can also be measured using sales. The estimation is similar.
27Both are truncated at 5-year window as before
28If we adopt the uniform assumption, the results will be similar
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Ln(q̃) in the simulated dataset. In the model, idea quality z0 determines citations; thus,
the simulated variable Ln(1 + Citations) is calculated as Ln(z0). The simulated Novelty
index is the same as the one used in the data.

Columns (1) and (3) exclude the technological wave measure, focusing solely on
the properties of patents and firms. In contrast, Columns (2) and (4) present regression
results based on Equation (8). Consistent with the empirical results, the model-generated
regressions demonstrate that firm size has a significantly positive effect on the economic
value of patents, controlling for idea quality. The coefficients for this relationship are
closely aligned, as we explicitly calibrate this moment using the synergy parameter
b. Additionally, both the simulated and empirical results suggests that idea quality
positively impacts the economic value of patents. However, this impact diminishes as
aggregate technological novelty increases, as reflected in the negative coefficients of the
interaction terms. The untargeted coefficient for the interaction term is −0.428 in the
model, compared to −0.390 in the data.

Table 13: Factors of Patents’ Economic Value for Incumbent Firms

Ln(Patents’ Economic Value)
Data Model

(1) (2) (3) (4)
Ln(1+Employment) 0.330*** 0.330*** 0.319*** 0.306***

(0.0262) (0.0262) (0.000119) (0.00011)
Ln(1+Citations) 0.0732*** 0.285*** 0.443*** 0.673***

(0.00561) (0.073) (3.37e-05) (0.000405)
Ln(1+Citations)×Noveltyt -0.390*** -0.428***

(0.135) (0.000753)
Year Fixed Effect Y Y Y Y
Year×IPC Fixed Effect Y Y - -

Observations 1,111,737 1,111,737 1,438,450 1,438,450
R-squared 0.295 0.295 0.995 0.996

Notes: Standard errors are clustered at the year level. Columns (1)-(2) are from data. Columns (3)-(4) are
generated by simulated data. Columns (1) and (3) exclude the technological wave measure and focus solely
on the property of the patents and firms. Columns (2) and (4) show coefficients of the regression equation
(8). The regressions control for year fixed effects across all specifications. *** Significant at the 1 percent
level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

66


	Introduction
	Empirical Patterns
	Technological Waves
	Measurement
	Contributors to the Tech Waves
	Tech Waves in Europe

	Market Concentration
	Allocation of Ideas
	Entrants or Incumbent Firms
	Granular Relationship between Tech Waves and the New-to-Incumbent Ratio
	Size of Incumbent Firms

	Economic Value of Patents over Tech Waves

	Model
	Preferences
	Technology
	Timeline
	Entry and Exit

	Equilibrium: Balanced Growth Path
	Production
	 Joining Incumbent Firms
	Starting up a New Business
	Inventor's Choice
	A Closed-Form Example
	The Full Model

	Entry and Exit
	Growth Rate
	Balanced Growth Path

	Calibration
	Identification
	Calibration Results

	Quantitative Analysis
	Technology Waves and the Market Concentration
	Allocation of ideas
	Decomposition of the Intensive and Extensive Margins
	Checking the Effect of Aggregate Novelty

	Conclusion
	Data Description
	The USPTO Patent Data
	The Compustat Fundamentals Annual
	The Longitudinal Business Database (LBD)

	More Empirical Evidence
	Empirical Patterns without Smoothing
	Technological Waves by Technological Field
	Novelty Index in Europe
	Relationship with the Technology Waves
	Alternative Measures of Market Concentration
	Sector-Level Relationship between Tech Waves and HHI
	Regression Analysis—Tech Waves and HHI of Sales
	IPC-Level Relationship between Tech Waves and New-to-Incumbent Ratio
	Patents' Economic Value Regression

	Model and Proof
	Production
	Closed Form Model
	Proof for Proposition 1
	Proof for Proposition 2
	Proof for Proposition 3
	Full Model
	Starting up New Businesses

	 Innovation value in an incumbent firm
	Model
	Data
	Calibration

	Quantification Details
	Checking the Effect of Aggregate Novelty—Details


